期刊论文详细信息
BMC Genomics
Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species
Research Article
Fei Tian1  Kai Zhao1  Chao Tong2 
[1] Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810001, Xining, China;Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Key Laboratory of Animal Ecological Genomics, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810001, Xining, China;University of Chinese Academy of Sciences, 100049, Beijing, China;Department of Biology, University of Pennsylvania, 19104-6018, Philadelphia, PA, USA;
关键词: Comparative genomics;    Schizothoracinae;    Highland adaptation;    Positive selection;    Innate immunity;   
DOI  :  10.1186/s12864-017-4352-8
 received in 2016-11-30, accepted in 2017-11-28,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundGenome-wide studies on highland adaptation mechanism in terrestrial animal have been widely reported with few available for aquatic animals. Tibetan Schizothoracinae species are ideal model systems to study speciation and adaptation of fish. The Schizothoracine fish, Gymnocypris przewalskii ganzihonensis had underwent the ecological niche shift from salt water to freshwater, and also experienced a recent split from Gymnocypris przewalskii przewalskii. In addition, G. p. ganzihonensis inhabited harsh aquatic environment including low temperature and hypoxia as well as other Schizothoracinae species, its genetic mechanism of highland adaptation have yet to be determined.ResultsOur study used comparative genomic analysis based on the transcriptomic data of G. p. ganzihonensis and other four fish genome datasets to investigate the genetic basis of highland adaptation in Schizothoracine fish. We found that Schizothoracine fish lineage on the terminal branch had an elevated dN/dS ratio than its ancestral branch. A total of 202 gene ontology (GO) categories involved into transport, energy metabolism and immune response had accelerated evolutionary rates than zebrafish. Interestingly, we also identified 162 genes showing signature of positive selection (PSG) involved into energy metabolism, transport and immune response in G. p. ganzihonesis. While, we failed to find any PSG related to hypoxia response as previous studies.ConclusionsComparative genomic analysis based on G. p. ganzihonensis transcriptome data revealed significant genomic signature of accelerated evolution ongoing within Tibetan Schizothoracinae species lineage. Molecular evolution analysis suggested that genes involved in energy metabolism, transport and immune response functions in Schizothoracine fish underwent positive selection, especially in innate immunity including toll-like receptor signaling pathway genes. Taken together, our result as a case study in Schizothoracinae species provides novel insights in understanding the aquatic animal adaptation to extreme environment on the Tibetan Plateau, and also provides valuable genomic resource for further functional verification studies.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311099890248ZK.pdf 1277KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  文献评价指标  
  下载次数:1次 浏览次数:0次