期刊论文详细信息
BMC Genomics
Detection of high variability in gene expression from single-cell RNA-seq profiling
Research
Yufang Jin1  Yufei Huang1  Hung-I Harry Chen2  Yidong Chen3 
[1] Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 78249, San Antonio, TX, USA;Greehey Children`s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 78229, San Antonio, TX, USA;Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 78249, San Antonio, TX, USA;Greehey Children`s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 78229, San Antonio, TX, USA;Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, 78229, San Antonio, TX, USA;
关键词: Single-cell;    Single-cell RNA-Seq;    Cell heterogeneity;    Negative binomial distribution;    Gene expression variation model;    Variably expressed genes;   
DOI  :  10.1186/s12864-016-2897-6
来源: Springer
PDF
【 摘 要 】

BackgroundThe advancement of the next-generation sequencing technology enables mapping gene expression at the single-cell level, capable of tracking cell heterogeneity and determination of cell subpopulations using single-cell RNA sequencing (scRNA-seq). Unlike the objectives of conventional RNA-seq where differential expression analysis is the integral component, the most important goal of scRNA-seq is to identify highly variable genes across a population of cells, to account for the discrete nature of single-cell gene expression and uniqueness of sequencing library preparation protocol for single-cell sequencing. However, there is lack of generic expression variation model for different scRNA-seq data sets. Hence, the objective of this study is to develop a gene expression variation model (GEVM), utilizing the relationship between coefficient of variation (CV) and average expression level to address the over-dispersion of single-cell data, and its corresponding statistical significance to quantify the variably expressed genes (VEGs).ResultsWe have built a simulation framework that generated scRNA-seq data with different number of cells, model parameters, and variation levels. We implemented our GEVM and demonstrated the robustness by using a set of simulated scRNA-seq data under different conditions. We evaluated the regression robustness using root-mean-square error (RMSE) and assessed the parameter estimation process by varying initial model parameters that deviated from homogeneous cell population. We also applied the GEVM on real scRNA-seq data to test the performance under distinct cases.ConclusionsIn this paper, we proposed a gene expression variation model that can be used to determine significant variably expressed genes. Applying the model to the simulated single-cell data, we observed robust parameter estimation under different conditions with minimal root mean square errors. We also examined the model on two distinct scRNA-seq data sets using different single-cell protocols and determined the VEGs. Obtaining VEGs allowed us to observe possible subpopulations, providing further evidences of cell heterogeneity. With the GEVM, we can easily find out significant variably expressed genes in different scRNA-seq data sets.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311099763013ZK.pdf 3779KB PDF download
12864_2017_3600_Article_IEq1.gif 1KB Image download
12864_2017_3938_Article_IEq11.gif 1KB Image download
12888_2016_877_Article_IEq21.gif 1KB Image download
12864_2017_3605_Article_IEq1.gif 1KB Image download
12888_2016_877_Article_IEq23.gif 1KB Image download
12888_2016_877_Article_IEq24.gif 1KB Image download
12864_2017_4071_Article_IEq1.gif 1KB Image download
12864_2017_3487_Article_IEq32.gif 1KB Image download
12894_2015_Article_85_TeX2GIF_IEq2.gif 1KB Image download
12864_2017_3670_Article_IEq12.gif 1KB Image download
12864_2017_4179_Article_IEq34.gif 1KB Image download
12864_2016_2897_Article_IEq12.gif 1KB Image download
12864_2017_3990_Article_IEq8.gif 1KB Image download
12864_2015_2192_Article_IEq25.gif 1KB Image download
【 图 表 】

12864_2015_2192_Article_IEq25.gif

12864_2017_3990_Article_IEq8.gif

12864_2016_2897_Article_IEq12.gif

12864_2017_4179_Article_IEq34.gif

12864_2017_3670_Article_IEq12.gif

12894_2015_Article_85_TeX2GIF_IEq2.gif

12864_2017_3487_Article_IEq32.gif

12864_2017_4071_Article_IEq1.gif

12888_2016_877_Article_IEq24.gif

12888_2016_877_Article_IEq23.gif

12864_2017_3605_Article_IEq1.gif

12888_2016_877_Article_IEq21.gif

12864_2017_3938_Article_IEq11.gif

12864_2017_3600_Article_IEq1.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  文献评价指标  
  下载次数:29次 浏览次数:4次