期刊论文详细信息
BMC Medical Imaging
Estimation of myocardial deformation using correlation image velocimetry
Research Article
Manikandan Mathur1  Ganapathy Krishnamurthi2  Athira Jacob3 
[1] Department of Aerospace Engineering, Indian Institute of Technology Madras, 600036, Chennai, India;Department of Engineering Design, Indian Institute of Technology Madras, 600036, Chennai, India;Department of Engineering Design, Indian Institute of Technology Madras, 600036, Chennai, India;Department of Biomedical Engineering, The Johns Hopkins University, 21218, Baltimore, USA;
关键词: Tagged magnetic resonance imaging;    Correlation image velocimetry;    Cardiac deformation;    Cardiac strain;   
DOI  :  10.1186/s12880-017-0195-7
 received in 2016-09-30, accepted in 2017-03-02,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundTagged Magnetic Resonance (tMR) imaging is a powerful technique for determining cardiovascular abnormalities. One of the reasons for tMR not being used in routine clinical practice is the lack of easy-to-use tools for image analysis and strain mapping. In this paper, we introduce a novel interdisciplinary method based on correlation image velocimetry (CIV) to estimate cardiac deformation and strain maps from tMR images.MethodsCIV, a cross-correlation based pattern matching algorithm, analyses a pair of images to obtain the displacement field at sub-pixel accuracy with any desired spatial resolution. This first time application of CIV to tMR image analysis is implemented using an existing open source Matlab-based software called UVMAT. The method, which requires two main input parameters namely correlation box size (CB) and search box size (SB), is first validated using a synthetic grid image with grid sizes representative of typical tMR images. Phantom and patient images obtained from a Medical Imaging grand challenge dataset (http://stacom.cardiacatlas.org/motion-tracking-challenge/) were then analysed to obtain cardiac displacement fields and strain maps. The results were then compared with estimates from Harmonic Phase analysis (HARP) technique.ResultsFor a known displacement field imposed on both the synthetic grid image and the phantom image, CIV is accurate for 3-pixel and larger displacements on a 512 × 512 image with (CB,SB)=(25,55) pixels. Further validation of our method is achieved by showing that our estimated landmark positions on patient images fall within the inter-observer variability in the ground truth. The effectiveness of our approach to analyse patient images is then established by calculating dense displacement fields throughout a cardiac cycle, and were found to be physiologically consistent. Circumferential strains were estimated at the apical, mid and basal slices of the heart, and were shown to compare favorably with those of HARP over the entire cardiac cycle, except in a few (∼4) of the segments in the 17-segment AHA model. The radial strains, however, are underestimated by our method in most segments when compared with HARP.ConclusionsIn summary, we have demonstrated the capability of CIV to accurately and efficiently quantify cardiac deformation from tMR images. Furthermore, physiologically consistent displacement fields and circumferential strain curves in most regions of the heart indicate that our approach, upon automating some pre-processing steps and testing in clinical trials, can potentially be implemented in a clinical setting.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311099441914ZK.pdf 5078KB PDF download
12864_2017_3487_Article_IEq42.gif 1KB Image download
12864_2017_3781_Article_IEq4.gif 1KB Image download
12864_2017_3487_Article_IEq44.gif 1KB Image download
12888_2017_1365_Article_IEq3.gif 1KB Image download
12864_2015_1970_Article_IEq11.gif 1KB Image download
12864_2017_3898_Article_IEq4.gif 1KB Image download
12864_2017_3492_Article_IEq7.gif 1KB Image download
12864_2017_3487_Article_IEq51.gif 1KB Image download
12864_2017_3492_Article_IEq9.gif 1KB Image download
12864_2017_3609_Article_IEq8.gif 1KB Image download
12864_2017_4190_Article_IEq5.gif 1KB Image download
12864_2017_4190_Article_IEq7.gif 1KB Image download
12864_2017_3655_Article_IEq3.gif 1KB Image download
12864_2017_3655_Article_IEq4.gif 1KB Image download
12896_2017_378_Article_IEq13.gif 1KB Image download
12864_2017_3609_Article_IEq14.gif 1KB Image download
12864_2017_3733_Article_IEq63.gif 1KB Image download
12864_2015_2297_Article_IEq19.gif 1KB Image download
12864_2017_3655_Article_IEq7.gif 1KB Image download
12864_2017_4320_Article_IEq2.gif 1KB Image download
12902_2017_161_Article_IEq1.gif 1KB Image download
12864_2017_3733_Article_IEq69.gif 1KB Image download
12864_2017_4269_Article_IEq6.gif 1KB Image download
【 图 表 】

12864_2017_4269_Article_IEq6.gif

12864_2017_3733_Article_IEq69.gif

12902_2017_161_Article_IEq1.gif

12864_2017_4320_Article_IEq2.gif

12864_2017_3655_Article_IEq7.gif

12864_2015_2297_Article_IEq19.gif

12864_2017_3733_Article_IEq63.gif

12864_2017_3609_Article_IEq14.gif

12896_2017_378_Article_IEq13.gif

12864_2017_3655_Article_IEq4.gif

12864_2017_3655_Article_IEq3.gif

12864_2017_4190_Article_IEq7.gif

12864_2017_4190_Article_IEq5.gif

12864_2017_3609_Article_IEq8.gif

12864_2017_3492_Article_IEq9.gif

12864_2017_3487_Article_IEq51.gif

12864_2017_3492_Article_IEq7.gif

12864_2017_3898_Article_IEq4.gif

12864_2015_1970_Article_IEq11.gif

12888_2017_1365_Article_IEq3.gif

12864_2017_3487_Article_IEq44.gif

12864_2017_3781_Article_IEq4.gif

12864_2017_3487_Article_IEq42.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  文献评价指标  
  下载次数:3次 浏览次数:0次