期刊论文详细信息
BMC Genomics
Literature aided determination of data quality and statistical significance threshold for gene expression studies
Research
Lijing Xu1  Ramin Homayouni2  E Olusegun George3  Cheng Cheng4 
[1] Bioinformatics Program, 38152, Memphis, TN, USA;Bioinformatics Program, 38152, Memphis, TN, USA;Department of Biology, University of Memphis, 38152, Memphis, TN, USA;Bioinformatics Program, 38152, Memphis, TN, USA;Department of Mathematical Sciences, 38152, Memphis, TN, USA;Department of Biostatistics, St. Jude Children's Research Hospital, 38105, Memphis, TN, USA;
关键词: False Discovery Rate;    Microarray Experiment;    Latent Semantic Indexing;    Gene Expression Experiment;    Medline Abstract;   
DOI  :  10.1186/1471-2164-13-S8-S23
来源: Springer
PDF
【 摘 要 】

BackgroundGene expression data are noisy due to technical and biological variability. Consequently, analysis of gene expression data is complex. Different statistical methods produce distinct sets of genes. In addition, selection of expression p-value (EPv) threshold is somewhat arbitrary. In this study, we aimed to develop novel literature based approaches to integrate functional information in analysis of gene expression data.MethodsFunctional relationships between genes were derived by Latent Semantic Indexing (LSI) of Medline abstracts and used to calculate the function cohesion of gene sets. In this study, literature cohesion was applied in two ways. First, Literature-Based Functional Significance (LBFS) method was developed to calculate a p-value for the cohesion of differentially expressed genes (DEGs) in order to objectively evaluate the overall biological significance of the gene expression experiments. Second, Literature Aided Statistical Significance Threshold (LASST) was developed to determine the appropriate expression p-value threshold for a given experiment.ResultsWe tested our methods on three different publicly available datasets. LBFS analysis demonstrated that only two experiments were significantly cohesive. For each experiment, we also compared the LBFS values of DEGs generated by four different statistical methods. We found that some statistical tests produced more functionally cohesive gene sets than others. However, no statistical test was consistently better for all experiments. This reemphasizes that a statistical test must be carefully selected for each expression study. Moreover, LASST analysis demonstrated that the expression p-value thresholds for some experiments were considerably lower (p < 0.02 and 0.01), suggesting that the arbitrary p-values and false discovery rate thresholds that are commonly used in expression studies may not be biologically sound.ConclusionsWe have developed robust and objective literature-based methods to evaluate the biological support for gene expression experiments and to determine the appropriate statistical significance threshold. These methods will assist investigators to more efficiently extract biologically meaningful insights from high throughput gene expression experiments.

【 授权许可】

Unknown   
© Xu et al.; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311099429994ZK.pdf 1145KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  文献评价指标  
  下载次数:2次 浏览次数:0次