期刊论文详细信息
BMC Plant Biology
Mutations in the Arabidopsis homoserine kinase gene DMR1 confer enhanced resistance to Fusarium culmorum and F. graminearum
Research Article
Nathaniel D Hawkins1  Kim E Hammond-Kosack1  Helen C Brewer1 
[1] Department of Plant Biology and Crop Science, Rothamsted Research, AL5 2JQ, Harpenden, UK;
关键词: Arabidopsis;    Fusarium culmorum;    Fusarium graminearum;    Homoserine kinase;    Disease resistance;    Gain of function;    Fusarium head scab;   
DOI  :  10.1186/s12870-014-0317-0
 received in 2014-07-24, accepted in 2014-11-06,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundMutation of Arabidopsis DMR1, encoding homoserine kinase, leads to elevation in homoserine and foliar resistance to the biotrophic pathogens Hyaloperonospora arabidopsidis and Oidium neolycopersici through activation of an unidentified defence mechanism. This study investigates the effect of mutation of dmr1 on resistance to the ascomycete pathogens Fusarium graminearum and F. culmorum, which cause Fusarium Ear Blight (FEB) disease on small grain cereals.ResultsWe initially found that the dmr1-2 mutant allele confers increased resistance to F. culmorum and F. graminearum silique infection, and decreased colonisation of rosette leaves. Meanwhile the dmr1-1 allele supports less rosette leaf colonisation but has wild type silique resistance. Three additional dmr1 alleles were subsequently examined for altered F. culmorum susceptibility and all showed increased silique resistance, while leaf colonisation was reduced in two (dmr1-3 and dmr1-4). Amino acid analysis of dmr1 siliques revealed homoserine accumulation, which is undetectable in wild type plants. Exogenous application of L-homoserine reduced bud infection in both dmr1 and wild type plants, whilst D-homoserine application did not. Delayed leaf senescence was also observed in dmr1 plants compared to wild type and correlated with reduced Fusarium leaf colonisation.ConclusionsThese findings suggest that common Arabidopsis DMR1 mediated susceptibility mechanisms occur during infection by both obligate biotrophic oomycete and hemi-biotrophic fungal pathogens, not only in vegetative but also in reproductive plant tissues. This has the potential to aid the development of cereal crops with enhanced resistance to FEB.

【 授权许可】

Unknown   
© Brewer et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311099256436ZK.pdf 3005KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:3次 浏览次数:4次