BMC Genomics | |
A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets | |
Research Article | |
Jos Boekhorst1  Hauke Smidt2  Eddy J Smid3  Milkha M Leimena4  Bartholomeus van den Bogert4  Erwin G Zoetendal4  Michiel Kleerebezem5  Javier Ramiro-Garcia6  Mark Davids7  Peter J Schaap7  | |
[1] Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands;NIZO Food Research B.V, P.O. Box 20, 6710 BA, Ede, The Netherlands;Laboratory of Microbiology, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands;TI Food and Nutrition (TIFN), P.O. Box 557, 6700 AN, Wageningen, The Netherlands;Laboratory of Food Microbiology, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands;TI Food and Nutrition (TIFN), P.O. Box 557, 6700 AN, Wageningen, The Netherlands;Laboratory of Microbiology, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands;TI Food and Nutrition (TIFN), P.O. Box 557, 6700 AN, Wageningen, The Netherlands;Laboratory of Microbiology, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands;Host-Microbe Interactomics Group, Wageningen University, P.O. box 338, 6700 AH, Wageningen, The Netherlands;NIZO Food Research B.V, P.O. Box 20, 6710 BA, Ede, The Netherlands;TI Food and Nutrition (TIFN), P.O. Box 557, 6700 AN, Wageningen, The Netherlands;Laboratory of Microbiology, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands;Laboratory of System and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands;TI Food and Nutrition (TIFN), P.O. Box 557, 6700 AN, Wageningen, The Netherlands;Laboratory of System and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands; | |
关键词: Metatranscriptome; Bioinformatic pipeline; Human small intestine microbiota; Illumina sequencing; Single-end reads; Paired-end reads; COG; KEGG; Metabolic pathways; | |
DOI : 10.1186/1471-2164-14-530 | |
received in 2013-04-07, accepted in 2013-08-01, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundNext generation sequencing (NGS) technologies can be applied in complex microbial ecosystems for metatranscriptome analysis by employing direct cDNA sequencing, which is known as RNA sequencing (RNA-seq). RNA-seq generates large datasets of great complexity, the comprehensive interpretation of which requires a reliable bioinformatic pipeline. In this study, we focus on the development of such a metatranscriptome pipeline, which we validate using Illumina RNA-seq datasets derived from the small intestine microbiota of two individuals with an ileostomy.ResultsThe metatranscriptome pipeline developed here enabled effective removal of rRNA derived sequences, followed by confident assignment of the predicted function and taxonomic origin of the mRNA reads. Phylogenetic analysis of the small intestine metatranscriptome datasets revealed a strong similarity with the community composition profiles obtained from 16S rDNA and rRNA pyrosequencing, indicating considerable congruency between community composition (rDNA), and the taxonomic distribution of overall (rRNA) and specific (mRNA) activity among its microbial members. Reproducibility of the metatranscriptome sequencing approach was established by independent duplicate experiments. In addition, comparison of metatranscriptome analysis employing single- or paired-end sequencing methods indicated that the latter approach does not provide improved functional or phylogenetic insights. Metatranscriptome functional-mapping allowed the analysis of global, and genus specific activity of the microbiota, and illustrated the potential of these approaches to unravel syntrophic interactions in microbial ecosystems.ConclusionsA reliable pipeline for metatransciptome data analysis was developed and evaluated using RNA-seq datasets obtained for the human small intestine microbiota. The set-up of the pipeline is very generic and can be applied for (bacterial) metatranscriptome analysis in any chosen niche.
【 授权许可】
Unknown
© Leimena et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311099226661ZK.pdf | 2384KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]