期刊论文详细信息
BMC Cell Biology
F-Prostaglandin receptor regulates endothelial cell function via fibroblast growth factor-2
Research Article
Henry N Jabbour1  Pamela Brown1  Margaret C Keightley1  Kurt J Sales1 
[1] MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK;
关键词: Conditioned Medium;    PD98059;    Network Formation;    Wortmannin;    Endothelial Cell Proliferation;   
DOI  :  10.1186/1471-2121-11-8
 received in 2009-08-12, accepted in 2010-01-21,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundProstaglandin (PG) F2α is a key regulator of endometrial function and exerts its biological action after coupling with its heptahelical G protein-coupled receptor (FP receptor). In endometrial adenocarcinoma the FP receptor expression is elevated. We have shown previously that PGF2α-FP receptor signalling in endometrial adenocarcinoma cells can upregulate several angiogenic factors including fibroblast growth factor-2 (FGF2). In the present study, we investigated the paracrine effect of conditioned medium produced via PGF2α-FP receptor signalling in endometrial adenocarcinoma cells stably expressing the FP receptor (Ishikawa FPS cells), on endothelial cell function.ResultsConditioned medium (CM) was collected from FPS cells after 24 hrs treatment with either vehicle (V CM) or 100 nM PGF2α (P CM). Treatment of human umbilical vein endothelial cells (HUVECs) with P CM significantly enhanced endothelial cell differentiation (network formation) and proliferation. Using chemical inhibitors of intracellular signalling, we found that P CM-stimulated endothelial cell network formation was mediated by secretion of endothelial PGF2α and activation of endothelial FP receptors, following FGF2-FGFR1 signalling, phosphorylation of ERK1/2 and induction of COX-2. Whereas, P CM stimulation of endothelial cell proliferation occurred independently of PGF2α secretion via an FGF2-FGFR1-ERK1/2 dependent mechanism involving activation of the mTOR pathway.ConclusionsTaken together, we have shown a novel mechanism whereby epithelial prostaglandin F2α-FP signalling regulates endothelial cell network formation and proliferation. In addition we provide novel in vitro evidence to suggest that prostaglandin F2α can directly regulate endothelial cell network formation but not endothelial cell proliferation. These findings have relevance for pathologies where the FP receptor is aberrantly expressed, such as endometrial adenocarcinoma, and provide in vitro evidence to suggest that targeting the FP receptor could provide an anti-angiogenic approach to reducing tumour vasculature and growth.

【 授权许可】

Unknown   
© Keightley et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311098912633ZK.pdf 1332KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  文献评价指标  
  下载次数:7次 浏览次数:1次