BMC Complementary and Alternative Medicine | |
Polysaccharides from Liriopes Radix ameliorate streptozotocin-induced type I diabetic nephropathy via regulating NF-κB and p38 MAPK signaling pathways | |
Research Article | |
Hung-Jen Lu1  Ming-Chang Wu1  Thing-Fong Tzeng2  Shorong-Shii Liou2  Sheng Da Lin2  I-Min Liu2  | |
[1] Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Neipu Township, Pingtung County, Taiwan;Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Yanpu Township, Pingtung County, Taiwan; | |
关键词: Diabetic Nephropathy; Normal Control Group; Diabetic Kidney; Mesangial Matrix; Slit Diaphragm; | |
DOI : 10.1186/1472-6882-14-156 | |
received in 2014-01-26, accepted in 2014-04-30, 发布年份 2014 | |
来源: Springer | |
【 摘 要 】
BackgroundThe polysaccharides from Liriopes Radix (PSLR) has been indicated to ameliorate insulin signaling transduction and glucose metabolism. We aimed to investigate whether PSLR exerts an ameliorative effect on renal damage in diabetes induced by streptozotocin.MethodsDiabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with PSLR (200 and 300 mg/kg/day for 8 weeks. The normal rats were chosen as nondiabetic control group. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses.ResultsDiabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight. All of these abnormalities were significantly reversed by PSLR. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with PSLR. The less protein expressions of renal nephrin and podocin in diabetic rats were increased following treatment with PSLR. PSLR reduced the accumulation of ED-1-expressing macrophages in renal tissue of diabetic rats. PSLR almost completely abolished T cells infiltration and attenuated the expression of proinflammatory cytokines. PSLR treatments not only reduced the degradation of inhibitory kappa B kinase, but also downregulated the protein expression of nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) in diabetic kidney.ConclusionsThe results suggest that the renal protective effects of PSLR occur through improved glycemic control and renal structural changes, which are involved in the inhibition of NF-κB and p-38 MAPK mediated inflammation.
【 授权许可】
Unknown
© Lu et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311098764949ZK.pdf | 3137KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]