期刊论文详细信息
BMC Pulmonary Medicine
Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium
Research Article
Fuai Lu1  Yuan Liu1  Lirong Kang1  Zhihua Wang1  Yongfu Wang1 
[1] Department of Rheumatology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, 014010, Baotou, Inner Mongolia, China;
关键词: Idiopathic pulmonary fibrosis;    Pirfenidone;    Oxidative stress;    Nrf2/Bach1;   
DOI  :  10.1186/s12890-017-0405-7
 received in 2016-07-17, accepted in 2017-04-01,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundOxidative stress is one of the important factors involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The equilibrium of Nuclear factor-erythroid-related factor 2 (Nrf2)/[BTB (broad-complex, tramtrack and bric-a-brac) and CNC (cap‘n’collar protein) homology 1, Bach1] determines the expression level of antioxidant factors, further regulating the function of oxidation/antioxidation capacity. Pirfenidone (PFD) is one of two currently for IPF therapy approved drugs. PFD regulates intracellular antioxidants, inhibits secretion of inflammatory cytokines and collagen synthesis. However the mechanisms of its antioxidant effects remain elusive.MethodsEffects of PFD treatment were studied in mouse lung fibroblasts (MLF) following induction by transforming-growth factor beta 1 (TGF-β1) and in mice following bleomycin-induced lung fibrosis. The mRNA and protein levels of oxidative stress-related factors Nrf2/Bach1 and their downstream antioxidant factors heme oxygenase-1 (Ho-1) and glutathione peroxidase 1 (Gpx1) were determined by RT-PCR and Western blot. Fibrosis-related cytokines interleukin-6 (IL-6) and myofibroblast markers type 1 collagen α1 (COL1A1) levels in supernate of MLF, serum, and bronchoalveolar lavage fluid (BALF) as well as malondialdehyde (MDA) in serum and BALF were detected by ELISA, reactive oxygen species (ROS) generation was measured by 2′,7′- dichlorofluorescin diacetate (DCFH-DA) assay and lung pathological/morphological alterations in mice were observed by HE and Masson to assess the antioxidant mechanism and therapeutic effects on pulmonary fibrosis induced by bleomycin.ResultsPFD inhibited Bach1 mRNA and protein expressions in mouse lung fibroblasts induced by TGF-β1 and lung tissues with pulmonary fibrosis induced by bleomycin. Furthermore, it improved Nrf2, Ho-1 and Gpx1 mRNA and protein expressions. After PFD treatment, COL1A1and IL-6 levels in supernate of MLF, serum, and BALF as well as ROS in lung tissues and MDA in serum and BALF from a mouse with pulmonary fibrosis were significantly decreased, and the infiltration of lung inflammatory cells and fibrosis degree were alleviated.ConclusionsTheraputic effects of PFD for IPF were involved in Nrf2/Bach1 equilibrium which regulated the capacity of oxidative stress. The study provided new insights into the antioxidant mechanism of PFD.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311098311534ZK.pdf 1537KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  文献评价指标  
  下载次数:0次 浏览次数:0次