期刊论文详细信息
BMC Bioinformatics
PSE-HMM: genome-wide CNV detection from NGS data using an HMM with Position-Specific Emission probabilities
Methodology Article
Mehdi Sadeghi1  Seyed Amir Malekpour2  Hamid Pezeshk3 
[1] National Institute of Genetic Engineering and Biotechnology, Tehran, Iran;School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, 14155-6455, Tehran, Iran;School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, 14155-6455, Tehran, Iran;School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran;
关键词: Next Generation Sequencing (NGS);    Hidden Markov Models (HMMs);    Expectation Maximization (EM) algorithm;    mixture densities;    Copy Number Variation (CNV);   
DOI  :  10.1186/s12859-016-1296-y
 received in 2016-05-22, accepted in 2016-10-20,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundCopy Number Variation (CNV) is envisaged to be a major source of large structural variations in the human genome. In recent years, many studies apply Next Generation Sequencing (NGS) data for the CNV detection. However, still there is a necessity to invent more accurate computational tools.ResultsIn this study, mate pair NGS data are used for the CNV detection in a Hidden Markov Model (HMM). The proposed HMM has position specific emission probabilities, i.e. a Gaussian mixture distribution. Each component in the Gaussian mixture distribution captures a different type of aberration that is observed in the mate pairs, after being mapped to the reference genome. These aberrations may include any increase (decrease) in the insertion size or change in the direction of mate pairs that are mapped to the reference genome. This HMM with Position-Specific Emission probabilities (PSE-HMM) is utilized for the genome-wide detection of deletions and tandem duplications. The performance of PSE-HMM is evaluated on a simulated dataset and also on a real data of a Yoruban HapMap individual, NA18507.ConclusionsPSE-HMM is effective in taking observation dependencies into account and reaches a high accuracy in detecting genome-wide CNVs. MATLAB programs are available at http://bs.ipm.ir/softwares/PSE-HMM/.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311098147235ZK.pdf 794KB PDF download
12888_2017_1528_Article_IEq1.gif 1KB Image download
12864_2017_4132_Article_IEq31.gif 1KB Image download
12888_2017_1559_Article_IEq1.gif 1KB Image download
12864_2017_3605_Article_IEq4.gif 1KB Image download
12864_2017_3661_Article_IEq5.gif 1KB Image download
12864_2017_3798_Article_IEq1.gif 1KB Image download
12864_2017_3605_Article_IEq5.gif 1KB Image download
12864_2017_3492_Article_IEq4.gif 1KB Image download
12864_2016_3194_Article_IEq3.gif 1KB Image download
12711_2017_331_Article_IEq65.gif 1KB Image download
12864_2017_3920_Article_IEq5.gif 1KB Image download
12867_2017_86_Article_IEq1.gif 1KB Image download
12864_2016_2388_Article_IEq4.gif 1KB Image download
12864_2017_4020_Article_IEq6.gif 1KB Image download
12864_2017_3733_Article_IEq43.gif 1KB Image download
12864_2016_3425_Article_IEq8.gif 1KB Image download
12864_2017_3777_Article_IEq4.gif 1KB Image download
12864_2017_3990_Article_IEq12.gif 1KB Image download
【 图 表 】

12864_2017_3990_Article_IEq12.gif

12864_2017_3777_Article_IEq4.gif

12864_2016_3425_Article_IEq8.gif

12864_2017_3733_Article_IEq43.gif

12864_2017_4020_Article_IEq6.gif

12864_2016_2388_Article_IEq4.gif

12867_2017_86_Article_IEq1.gif

12864_2017_3920_Article_IEq5.gif

12711_2017_331_Article_IEq65.gif

12864_2016_3194_Article_IEq3.gif

12864_2017_3492_Article_IEq4.gif

12864_2017_3605_Article_IEq5.gif

12864_2017_3798_Article_IEq1.gif

12864_2017_3661_Article_IEq5.gif

12864_2017_3605_Article_IEq4.gif

12888_2017_1559_Article_IEq1.gif

12864_2017_4132_Article_IEq31.gif

12888_2017_1528_Article_IEq1.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  文献评价指标  
  下载次数:12次 浏览次数:0次