BMC Bioinformatics | |
Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network | |
Proceedings | |
Navadon Khunlertgit1  Byung-Jun Yoon1  | |
[1] Department of Electrical and Computer Engineering, Texas A&M University, 77843-3128, College Station, TX, USA; | |
关键词: Cancer classification; Subnetwork marker identification; Protein-protein interaction network; Message passing algorithm; Topological information; | |
DOI : 10.1186/s12859-016-1224-1 | |
来源: Springer | |
【 摘 要 】
BackgroundDiscovering robust markers for cancer prognosis based on gene expression data is an important yet challenging problem in translational bioinformatics. By integrating additional information in biological pathways or a protein-protein interaction (PPI) network, we can find better biomarkers that lead to more accurate and reproducible prognostic predictions. In fact, recent studies have shown that, “modular markers,” that integrate multiple genes with potential interactions can improve disease classification and also provide better understanding of the disease mechanisms.ResultsIn this work, we propose a novel algorithm for finding robust and effective subnetwork markers that can accurately predict cancer prognosis. To simultaneously discover multiple synergistic subnetwork markers in a human PPI network, we build on our previous work that uses affinity propagation, an efficient clustering algorithm based on a message-passing scheme. Using affinity propagation, we identify potential subnetwork markers that consist of discriminative genes that display coherent expression patterns and whose protein products are closely located on the PPI network. Furthermore, we incorporate the topological information from the PPI network to evaluate the potential of a given set of proteins to be involved in a functional module. Primarily, we adopt widely made assumptions that densely connected subnetworks may likely be potential functional modules and that proteins that are not directly connected but interact with similar sets of other proteins may share similar functionalities.ConclusionsIncorporating topological attributes based on these assumptions can enhance the prediction of potential subnetwork markers. We evaluate the performance of the proposed subnetwork marker identification method by performing classification experiments using multiple independent breast cancer gene expression datasets and PPI networks. We show that our method leads to the discovery of robust subnetwork markers that can improve cancer classification.
【 授权许可】
CC BY
© The Author(s) 2016
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311098139024ZK.pdf | 1271KB | download | |
12864_2016_3440_Article_IEq76.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq50.gif | 1KB | Image | download |
12864_2017_3809_Article_IEq5.gif | 1KB | Image | download |
12864_2017_3781_Article_IEq8.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq52.gif | 1KB | Image | download |
12888_2015_697_Article_IEq1.gif | 1KB | Image | download |
12864_2017_4190_Article_IEq4.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq57.gif | 1KB | Image | download |
12864_2016_2463_Article_IEq1.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq59.gif | 1KB | Image | download |
12864_2016_3098_Article_IEq29.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq60.gif | 1KB | Image | download |
12864_2016_2789_Article_IEq41.gif | 1KB | Image | download |
12864_2016_2789_Article_IEq42.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq63.gif | 1KB | Image | download |
【 图 表 】
12864_2017_3733_Article_IEq63.gif
12864_2016_2789_Article_IEq42.gif
12864_2016_2789_Article_IEq41.gif
12864_2017_3733_Article_IEq60.gif
12864_2016_3098_Article_IEq29.gif
12864_2017_3733_Article_IEq59.gif
12864_2016_2463_Article_IEq1.gif
12864_2017_3733_Article_IEq57.gif
12864_2017_4190_Article_IEq4.gif
12888_2015_697_Article_IEq1.gif
12864_2017_3733_Article_IEq52.gif
12864_2017_3781_Article_IEq8.gif
12864_2017_3809_Article_IEq5.gif
12864_2017_3733_Article_IEq50.gif
12864_2016_3440_Article_IEq76.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]