期刊论文详细信息
BMC Genomics
The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae
Research Article
Estéfani García-Ríos1  José M. Guillamón1  Miguel Morard2  Leopold Parts3  Gianni Liti4 
[1] Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980-Paterna, Valencia, Spain;Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980-Paterna, Valencia, Spain;Departament de Genètica, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain;European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany;Wellcome Trust Sanger Institute, CB101SA, Hinxton, UK;Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U1081, Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France;
关键词: Quantitative trait loci;    Cold adaptation;    Industrial yeast;    Subtelomeres;    Lipid asymmetry;    Reciprocal hemizygosity analysis;   
DOI  :  10.1186/s12864-017-3572-2
 received in 2016-09-27, accepted in 2017-02-09,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundLow-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci.ResultsIn order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions’ adaptive nature.ConclusionsThe reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311097922170ZK.pdf 1300KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  文献评价指标  
  下载次数:15次 浏览次数:3次