BMC Genomics | |
Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits | |
Methodology Article | |
C. Schrooten1  M. Haile-Mariam2  C. J. Vander Jagt2  A. J. Chamberlain2  B. J. Hayes3  P. J. Bowman3  K. E. Kemper4  I. M. MacLeod5  M. E. Goddard5  | |
[1] CRV, 6800 AL, Arnhem, The Netherlands;Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia;AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia;Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia;AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia;Biosciences Research Centre, La Trobe University, Victoria, Australia;Faculty of Veterinary & Agricultural Science, University of Melbourne, 3010, Victoria, Australia;AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia;Faculty of Veterinary & Agricultural Science, University of Melbourne, 3010, Victoria, Australia;Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia;AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia; | |
关键词: Bayesian analysis; Biological model; Genomic selection; Whole-genome association analysis; Milk traits; Dairy cattle; | |
DOI : 10.1186/s12864-016-2443-6 | |
received in 2015-09-01, accepted in 2016-02-08, 发布年份 2016 | |
来源: Springer | |
【 摘 要 】
BackgroundDense SNP genotypes are often combined with complex trait phenotypes to map causal variants, study genetic architecture and provide genomic predictions for individuals with genotypes but no phenotype. A single method of analysis that jointly fits all genotypes in a Bayesian mixture model (BayesR) has been shown to competitively address all 3 purposes simultaneously. However, BayesR and other similar methods ignore prior biological knowledge and assume all genotypes are equally likely to affect the trait. While this assumption is reasonable for SNP array genotypes, it is less sensible if genotypes are whole-genome sequence variants which should include causal variants.ResultsWe introduce a new method (BayesRC) based on BayesR that incorporates prior biological information in the analysis by defining classes of variants likely to be enriched for causal mutations. The information can be derived from a range of sources, including variant annotation, candidate gene lists and known causal variants. This information is then incorporated objectively in the analysis based on evidence of enrichment in the data. We demonstrate the increased power of BayesRC compared to BayesR using real dairy cattle genotypes with simulated phenotypes. The genotypes were imputed whole-genome sequence variants in coding regions combined with dense SNP markers. BayesRC increased the power to detect causal variants and increased the accuracy of genomic prediction. The relative improvement for genomic prediction was most apparent in validation populations that were not closely related to the reference population. We also applied BayesRC to real milk production phenotypes in dairy cattle using independent biological priors from gene expression analyses. Although current biological knowledge of which genes and variants affect milk production is still very incomplete, our results suggest that the new BayesRC method was equal to or more powerful than BayesR for detecting candidate causal variants and for genomic prediction of milk traits.ConclusionsBayesRC provides a novel and flexible approach to simultaneously improving the accuracy of QTL discovery and genomic prediction by taking advantage of prior biological knowledge. Approaches such as BayesRC will become increasing useful as biological knowledge accumulates regarding functional regions of the genome for a range of traits and species.
【 授权许可】
CC BY
© MacLeod et al. 2016
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311097701375ZK.pdf | 3406KB | download | |
12864_2017_4309_Article_IEq9.gif | 1KB | Image | download |
12864_2017_3821_Article_IEq5.gif | 1KB | Image | download |
12864_2015_2055_Article_IEq59.gif | 1KB | Image | download |
12864_2015_2055_Article_IEq60.gif | 1KB | Image | download |
12864_2017_4130_Article_IEq3.gif | 1KB | Image | download |
12864_2015_2163_Article_IEq3.gif | 1KB | Image | download |
12864_2017_4309_Article_IEq14.gif | 1KB | Image | download |
12864_2015_1994_Article_IEq16.gif | 1KB | Image | download |
12864_2017_4130_Article_IEq5.gif | 1KB | Image | download |
12864_2015_1994_Article_IEq17.gif | 1KB | Image | download |
12864_2016_3426_Article_IEq2.gif | 1KB | Image | download |
12864_2016_2443_Article_IEq12.gif | 1KB | Image | download |
12864_2016_2443_Article_IEq13.gif | 1KB | Image | download |
12864_2016_2443_Article_IEq14.gif | 1KB | Image | download |
12864_2016_2443_Article_IEq15.gif | 1KB | Image | download |
12864_2017_4025_Article_IEq4.gif | 1KB | Image | download |
12864_2017_4025_Article_IEq6.gif | 1KB | Image | download |
12864_2017_3498_Article_IEq1.gif | 1KB | Image | download |
12864_2017_4025_Article_IEq8.gif | 1KB | Image | download |
12864_2017_3708_Article_IEq1.gif | 1KB | Image | download |
12864_2017_4020_Article_IEq48.gif | 1KB | Image | download |
12864_2016_2443_Article_IEq22.gif | 1KB | Image | download |
12864_2017_4025_Article_IEq11.gif | 1KB | Image | download |
【 图 表 】
12864_2017_4025_Article_IEq11.gif
12864_2016_2443_Article_IEq22.gif
12864_2017_4020_Article_IEq48.gif
12864_2017_3708_Article_IEq1.gif
12864_2017_4025_Article_IEq8.gif
12864_2017_3498_Article_IEq1.gif
12864_2017_4025_Article_IEq6.gif
12864_2017_4025_Article_IEq4.gif
12864_2016_2443_Article_IEq15.gif
12864_2016_2443_Article_IEq14.gif
12864_2016_2443_Article_IEq13.gif
12864_2016_2443_Article_IEq12.gif
12864_2016_3426_Article_IEq2.gif
12864_2015_1994_Article_IEq17.gif
12864_2017_4130_Article_IEq5.gif
12864_2015_1994_Article_IEq16.gif
12864_2017_4309_Article_IEq14.gif
12864_2015_2163_Article_IEq3.gif
12864_2017_4130_Article_IEq3.gif
12864_2015_2055_Article_IEq60.gif
12864_2015_2055_Article_IEq59.gif
12864_2017_3821_Article_IEq5.gif
12864_2017_4309_Article_IEq9.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]