期刊论文详细信息
BMC Infectious Diseases
Spatial and temporal variation and hotspot detection of kala-azar disease in Vaishali district (Bihar), India
Research Article
Nandini Chatterjee1  Vijay Kumar2  Shreekant Kesari2  Pradeep Das2  Gouri Sankar Bhunia2 
[1] Department of Geography, Presidency University, 86/1College Street, 700073, Kolkata, West Bengal, India;Department of Vector Biology and Control, Rajendra Memorial Research Institute of Medical Sciences (ICMR), 800007, AgamkuanPatnaBihar, India;
关键词: Kala-azar;    Spatial statistics;    Spatio-temporal;    Hotspot;   
DOI  :  10.1186/1471-2334-13-64
 received in 2012-04-26, accepted in 2013-01-25,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundAn improved understanding in transmission variation of kala-azar is fundamental to conduct surveillance and implementing disease prevention strategies. This study investigated the spatio-temporal patterns and hotspot detection for reporting kala-azar cases in Vaishali district based on spatial statistical analysis.MethodsEpidemiological data from the study area during 2007–2011 was used to examine the dynamic space-time pattern of kala-azar outbreaks, and all cases were geocoded at a village level. Spatial smoothing was applied to reduce random noise in the data. Inverse distance weighting (IDW) is used to interpolate and predict the pattern of VL cases distribution across the district. Moran’s I Index (Moran’s I) statistics was used to evaluate autocorrelation in kala-azar spatial distribution and test how villages were clustered or dispersed in space. Getis-Ord Gi*(d) was used to identify the hotspot and cold spot areas within the study site.ResultsMapping kala-azar cases or incidences reflects the spatial heterogeneity in the incidence rate of kala-azar affected villages in Vaishali district. Kala-azar incidence rate map showed most of the highest endemic villages were located in southern, eastern and northwestern part of the district; in the middle part of the district generally show the medium occurrence of VL. There was a significant positive spatial autocorrelation of kala-azar incidences for five consecutive years, with Moran’s I statistic ranging from 0.04-0.17 (P <0.01). The results revealed spatially clustered patterns with significant differences by village. The hotspots showed the spatial trend of kala-azar diffusion (P < 0.01).ConclusionsThe results pointed to the usefulness of spatial statistical approach to improve our understanding the spatio-temporal dynamics and control of kala-azar. The study also showed the north-western and southern part of Vaishali district is most likely endemic cluster region. To employ exact and geographically suitable risk-reduction programmes, apply of such spatial analysis tools should suit a vital constituent in epidemiology research and risk evaluation of kala-azar.

【 授权许可】

Unknown   
© Bhunia et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311097655797ZK.pdf 2215KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  文献评价指标  
  下载次数:6次 浏览次数:1次