期刊论文详细信息
BMC Genomics
Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants
Research Article
Zhiqiu Hu1  Fred Y. Peng2  Rong-Cai Yang3 
[1] Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, T6G 2P5, Edmonton, AB, Canada;Feed Crops Section, Alberta Agriculture and Forestry, 7000 - 113 Street, T6H 5T6, Edmonton, AB, Canada;Feed Crops Section, Alberta Agriculture and Forestry, 7000 - 113 Street, T6H 5T6, Edmonton, AB, Canada;Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, T6G 2P5, Edmonton, AB, Canada;
关键词: Cereal plants;    Photoperiod;    Position weight matrices;    Transcription factor binding sites;    Transcription regulation;    Vernalization;    Flowering genes;   
DOI  :  10.1186/s12864-016-2916-7
 received in 2016-04-20, accepted in 2016-07-07,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundMany genes involved in responses to photoperiod and vernalization have been characterized or predicted in Arabidopsis (Arabidopsis thaliana), Brachypodium (Brachypodium distachyon), wheat (Triticum aestivum) and barley (Hordeum vulgare). However, little is known about the transcription regulation of these genes, especially in the large, complex genomes of wheat and barley.ResultsWe identified 68, 60, 195 and 61 genes that are known or postulated to control pathways of photoperiod (PH), vernalization (VE) and pathway integration (PI) in Arabidopsis, Brachypodium, wheat and barley for predicting transcription factor binding sites (TFBSs) in the promoters of these genes using the FIMO motif search tool of the MEME Suite. The initial predicted TFBSs were filtered to confirm the final numbers of predicted TFBSs to be 1066, 1379, 1528, and 789 in Arabidopsis, Brachypodium, wheat and barley, respectively. These TFBSs were mapped onto the PH, VE and PI pathways to infer about the regulation of gene expression in Arabidopsis and cereal species. The GC contents in promoters, untranslated regions (UTRs), coding sequences and introns were higher in the three cereal species than those in Arabidopsis. The predicted TFBSs were most abundant for two transcription factor (TF) families: MADS-box and CSD (cold shock domain). The analysis of publicly available gene expression data showed that genes with similar numbers of MADS-box and CSD TFBSs exhibited similar expression patterns across several different tissues and developmental stages. The intra-specific Tajima D-statistics of TFBS motif diversity showed different binding specificity among different TF families. The inter-specific Tajima D-statistics suggested faster TFBS divergence in TFBSs than in coding sequences and introns. Mapping TFBSs onto the PH, VE and PI pathways showed the predominance of MADS-box and CSD TFBSs in most genes of the four species, and the difference in the pathway regulations between Arabidopsis and the three cereal species.ConclusionOur approach to associating the key flowering genes with their potential TFs through prediction of putative TFBSs provides a framework to explore regulatory mechanisms of photoperiod and vernalization responses in flowering plants. The predicted TFBSs in the promoters of the flowering genes provide a basis for molecular characterization of transcription regulation in the large, complex genomes of important crop species, wheat and barley.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311097574949ZK.pdf 2444KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  文献评价指标  
  下载次数:2次 浏览次数:0次