期刊论文详细信息
BMC Complementary and Alternative Medicine
Therapeutic properties in Tunisian hot springs: first evidence of phenolic compounds in the cyanobacterium Leptolyngbya sp. biomass, capsular polysaccharides and releasing polysaccharides
Research Article
Amira Mnari1  Lamia Trabelsi2  Salwa Abid-Essafi3  Mohamed M. Abdel-Daim4  Lotfi Aleya5 
[1] Biochemistry Laboratory, Research Laboratory in “Nutrition- Functional Food and Vascular Health” Faculty of Medicine, 5019, Monastir, Tunisia;Laboratory of Marine Biodiversity and Biotechnology, National Institute of Marine Sciences and Technology, BP 59, 5000, Monastir, Tunisia;Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentisty, 5019, Monastir, Tunisia;Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt;Université de Bourgogne Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS, 6249, Besançon, France;
关键词: Hot spring water;    Leptolyngbya;    Antioxidant activities;    Phytochemical content;    Phenolic profile;   
DOI  :  10.1186/s12906-016-1492-3
 received in 2016-06-23, accepted in 2016-11-30,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundIn Tunisia, the use of hot spring waters for both health and recreation is a tradition dating back to Roman times. In fact, thermal baths, usually called “Hammam” are recommended as a therapeutic and prophylactic measure against many types of illness and toxicity. While the chemical concentration of thermal water is admittedly associated with its therapeutic effects, the inclusion in spa waters of efficient bioproduct additives produced by photosynthetic microorganisms and that act against oxidative stress may comprise a significant supplementary value for thermal centers. The aim of this study was to investigate the antioxidant potential of the Tunisian thermophilic cyanobacterium Leptolyngbya sp. and to determine its phytochemical constituents and phenolic profile.MethodsBME (Biomass Methanolic Extract), CME (Capsular polysaccharides Methanolic Extract) and RME (Releasing polysaccharides Methanolic Extract) of Leptolyngbya sp. were examined for their antioxidant activities by means of DPPH, hydroxyl radical scavenging and ferrous ion chelating assays. Their total phenols, flavonoids, carotenoids, Mycosporine-like amino acids (MAAs) and vitamin C contents, as well as their phenolic profiles were also determined.ResultsBME has the highest content of phenols (139 ± 1.2 mg/g), flavonoids (34.9 ± 0.32 mg CEQ/g), carotenoids (2.03 ± 0.56 mg/g) and vitamin C (15.7 ± 1.55 mg/g), while the highest MAAs content (0.42 ± 0.03 mg/g) was observed in CME. BME presented both the highest DPPH and hydroxyl radical scavenging ability with an IC50 of 0.07 and 0.38 mg/ml, respectively. The highest ferrous chelating capacity was detected in CME with an IC50 = 0.59 mg/ml. Phenolic profiles revealed the presence of 25 phenolic compounds with the existence of hydroxytyrosol, oleuropein, resveratrol and pinoresinol.ConclusionThe study demonstrated that the cyanobacterium Leptolyngbya sp. possesses abundant natural antioxidant products which may have prophylactic and therapeutic effects on many types of illness and toxicity. The present findings not only explain and reinforce the rationale behind traditional therapeutic practices in Tunisia in the exploitation of the country’s hot springs, but support the addition of Leptolyngbya to thermal waters as a means to enhance the value and reputation of the curative nature of Tunisian thermal waters.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311097570551ZK.pdf 2852KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  文献评价指标  
  下载次数:1次 浏览次数:0次