期刊论文详细信息
BMC Complementary and Alternative Medicine
Polygonum viviparum L. induces vasorelaxation in the rat thoracic aorta via activation of nitric oxide synthase in endothelial cells
Research Article
Joe-Sharg Li1  Ming-Long Chang1  Khoot-Peng Cheah1  Wen-Yu Yu1  Chien-Ming Hu2  Jung-Su Chang3  Hui-Wen Cheng4 
[1] Emergency Department, Taipei Medical University Hospital, 252 Wu-Xing Street, 110, Taipei, Taiwan;Emergency Department, Taipei Medical University Hospital, 252 Wu-Xing Street, 110, Taipei, Taiwan;Department of General Medicine, School of Medicine, College of Medicine, Taipei, Taiwan;Medical University, 250 Wu-Xing Street, 110, Taipei, Taiwan;School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan;School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan;
关键词: Polygonum viviparum;    Aorta;    Vasorelaxation;    cGMP;    eNOS;    HUVECs;   
DOI  :  10.1186/1472-6882-14-150
 received in 2012-09-21, accepted in 2014-04-17,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundIn the past several decades, Polygonum viviparum L. (PV) was reported to have antibacterial, antiulcer, antioxidant, antitumor, anti-inflammatory, and antiarthritic properties. The anti-inflammatory pathway was recently elucidated through cytosolic nuclear factor E2-related factor 2 (Nrf2) activation and heme oxygenase (HO)-1 protein expression. PV is a perennial herb and widely distributed in high-elevation mountain regions, such as the Tibetan Plateau. In Tibetan traditional medicine, PV is usually used to boost the blood circulation to dissipate blood stasis. Therefore, this study focused on how PV improves the vascular circulation and acts on vascular tissues.MethodsIn this study, we isolated aortas from Sprague-Dawley rats (male, weight about 250 ~ 350 g), and detected the effects of PV on phenylephrine (PE)-induced contraction and cyclic guanosine 3′,5′-monophosphate (cGMP) formation using aortic rings. In addition, human umbilical vein endothelial cells (HUVECs) were used to exam nitric oxygen (NO) synthase (NOS) activity by directly measuring NO production in the culture medium. Endothelial (e) NOS phosphorylation, and cytosolic Nrf2 and HO-1 expressions were measured using a Western blot analysis.ResultsPV dose-dependently relaxed PE-induced contractions in endothelial-intact but not -denuded aorta. The concentration to produce 50% relaxation was 22.04 ± 1.77 μg/ml. PV-induced vasorelaxation was markedly blocked by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME), an NOS inhibitor, methylene blue (MB), a guanylyl cyclase inhibitor, and hemoglobin, an NO scavenger. PV increased cGMP formation; however, this effect was also suppressed by co-pretreatment with l-NAME, MB, hemoglobin, and Ca2+-free medium. In HUVECs, PV increased NO formation, which was greatly attenuated by NOS inhibitors (L-NAME and L-NMMA) and by removing extracellular Ca2+ and chelating intracellular Ca2+ with BAPTA-AM. In addition, PV promoted eNOS phosphorylation, Nrf2 degradation, and HO-1 protein expression according to a Western blot analysis.ConclusionsThe results suggest that PV possesses vasorelaxing action in an endothelium-dependent manner and works through activating Ca2+/calmodulin- dependent NO synthesis; when NO is released and then transferred to smooth muscle cells, NO activates guanylyl cyclase and increases cGMP formation, ultimately resulting in vasorelaxation. Thus, PV can be considered for application as a potential therapeutic approach for vascular-associated disorders.

【 授权许可】

Unknown   
© Chang et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

【 预 览 】
附件列表
Files Size Format View
RO202311097496786ZK.pdf 599KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  文献评价指标  
  下载次数:4次 浏览次数:2次