期刊论文详细信息
BMC Genomics
Global transcriptome analysis of AtPAP2 - overexpressing Arabidopsisthalianawith elevated ATP
Research Article
James Whelan1  Peng Zhang2  Jun Yang2  Feng Sun3  Chao Liang3  Boon Leong Lim4 
[1] Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 6009, Crawley, WA, Australia;Botany Department, School of Life Science, La Trobe University, 3086, BundooraVictoria, Australia;National Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China;School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China;School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China;Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
关键词: Chloroplast;    Mitochondria;    LHC;    Redox;    Photosystem;    Transcriptomes;   
DOI  :  10.1186/1471-2164-14-752
 received in 2013-04-16, accepted in 2013-10-19,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundAtPAP2 is a purple acid phosphatase that is targeted to both chloroplasts and mitochondria. Over-expression (OE) lines of AtPAP2 grew faster, produced more seeds, and contained higher leaf sucrose and glucose contents. The present study aimed to determine how high energy status affects leaf and root transcriptomes.ResultsATP and ADP levels in the OE lines are 30-50% and 20-50% higher than in the wild-type (WT) plants. Global transcriptome analyses indicated that transcriptional regulation does play a role in sucrose and starch metabolism, nitrogen, potassium and iron uptake, amino acids and secondary metabolites metabolism when there is an ample supply of energy. While the transcript abundance of genes encoding protein components of photosystem I (PS I), photosystem II (PS II) and light harvesting complex I (LHCI) were unaltered, changes in transcript abundance for genes encoding proteins of LHCII are significant. The gene expressions of most enzymes of the Calvin cycle, glycolysis and the tricarboxylic acid (TCA) cycle were unaltered, as these enzymes are known to be regulated by light/redox status or allosteric modulation by the products (e.g. citrate, ATP/ADP ratio), but not at the level of transcription.ConclusionsAtPAP2 overexpression resulted in a widespread reprogramming of the transcriptome in the transgenic plants, which is characterized by changes in the carbon, nitrogen, potassium, and iron metabolism. The fast-growing AtPAP2 OE lines provide an interesting tool for studying the regulation of energy system in plant.

【 授权许可】

Unknown   
© Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311097260198ZK.pdf 2194KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  文献评价指标  
  下载次数:9次 浏览次数:1次