| BMC Plant Biology | |
| Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis | |
| Research Article | |
| Mercedes Royuela1  Ana Zabalza1  Sergio G Nebauer2  Jose Gadea3  Isabel Faus3  Julia Santiago3  Ramon Serrano3  | |
| [1] Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadía, 31006, Pamplona, Spain;Departamento de Producción Vegetal, Universitat Politécnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain;Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politécnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Ed. 8E. C/ Ingeniero Fausto Elio s/n, 46022, Valencia, Spain; | |
| 关键词: Glyphosate; Gcn2; Transcriptomic; Shikimate; Translation; Herbicide; | |
| DOI : 10.1186/s12870-014-0378-0 | |
| received in 2014-06-20, accepted in 2014-12-10, 发布年份 2015 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundThe increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified.ResultsIn this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate.ConclusionsThese results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.
【 授权许可】
Unknown
© Faus et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311096895507ZK.pdf | 3666KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
PDF