期刊论文详细信息
BMC Bioinformatics
Statistical elimination of spectral features with large between-run variation enhances quantitative protein-level conclusions in experiments with data-independent spectral acquisition
Meeting Abstract
Hannes Röst1  Yansheng Liu1  Ruedi Aebersold2  Olga Vitek3  Lin-Yang Cheng4  Ching-Yun Chang4 
[1] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland;Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland;Faculty of Science, University of Zurich, 8057, Zurich, Switzerland;Department of Computer Science, Purdue University, West Lafayette, IN, USA;Department of Statistics, Purdue University, West Lafayette, IN, USA;
关键词: Feature Selection;    False Discovery Rate;    Spectral Feature;    Protein Abundance;    Select Reaction Monitoring;   
DOI  :  10.1186/1471-2105-16-S2-A4
来源: Springer
PDF
【 摘 要 】

【 授权许可】

CC BY   
© Cheng et al; licensee BioMed Central Ltd. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311096636832ZK.pdf 148KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  文献评价指标  
  下载次数:7次 浏览次数:8次