期刊论文详细信息
BMC Bioinformatics
QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model
Methodology Article
Jia Meng1  Yufei Huang2  Shao-Wu Zhang3  Lian Liu3 
[1] Department of Biological Sciences, HRINU, SUERI, Xi’an Jiaotong-Liverpool University, 215123, Suzhou, Jiangsu, China;Institute of Integrative Biology, University of Liverpool, L7 8TX, Liverpool, UK;Department of Electrical and Computation Engineering, University of Texas at San Antonio, 78230, San Antonio, TX, USA;Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, 710072, Xi’an, China;
关键词: Differential methylation analysis;    mA;    Negative binomial distribution;    RNA methylation;    Small-sample size;   
DOI  :  10.1186/s12859-017-1808-4
 received in 2017-05-26, accepted in 2017-08-22,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundAs a newly emerged research area, RNA epigenetics has drawn increasing attention recently for the participation of RNA methylation and other modifications in a number of crucial biological processes. Thanks to high throughput sequencing techniques, such as, MeRIP-Seq, transcriptome-wide RNA methylation profile is now available in the form of count-based data, with which it is often of interests to study the dynamics at epitranscriptomic layer. However, the sample size of RNA methylation experiment is usually very small due to its costs; and additionally, there usually exist a large number of genes whose methylation level cannot be accurately estimated due to their low expression level, making differential RNA methylation analysis a difficult task.ResultsWe present QNB, a statistical approach for differential RNA methylation analysis with count-based small-sample sequencing data. Compared with previous approaches such as DRME model based on a statistical test covering the IP samples only with 2 negative binomial distributions, QNB is based on 4 independent negative binomial distributions with their variances and means linked by local regressions, and in the way, the input control samples are also properly taken care of. In addition, different from DRME approach, which relies only the input control sample only for estimating the background, QNB uses a more robust estimator for gene expression by combining information from both input and IP samples, which could largely improve the testing performance for very lowly expressed genes.ConclusionQNB showed improved performance on both simulated and real MeRIP-Seq datasets when compared with competing algorithms. And the QNB model is also applicable to other datasets related RNA modifications, including but not limited to RNA bisulfite sequencing, m1A-Seq, Par-CLIP, RIP-Seq, etc.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311096239662ZK.pdf 2311KB PDF download
12864_2017_4132_Article_IEq36.gif 1KB Image download
12864_2016_3098_Article_IEq78.gif 1KB Image download
12864_2017_3781_Article_IEq7.gif 1KB Image download
12864_2017_3521_Article_IEq4.gif 1KB Image download
12864_2017_3781_Article_IEq9.gif 1KB Image download
12864_2017_3733_Article_IEq55.gif 1KB Image download
12864_2017_3733_Article_IEq56.gif 1KB Image download
12864_2016_3098_Article_IEq87.gif 1KB Image download
12864_2017_3733_Article_IEq57.gif 1KB Image download
12864_2016_2463_Article_IEq1.gif 1KB Image download
12864_2016_3098_Article_IEq29.gif 1KB Image download
12864_2015_2137_Article_IEq7.gif 1KB Image download
12864_2017_4348_Article_IEq2.gif 1KB Image download
12888_2017_1557_Article_IEq2.gif 1KB Image download
12864_2017_3777_Article_IEq24.gif 1KB Image download
12864_2016_2696_Article_IEq4.gif 1KB Image download
12888_2017_1557_Article_IEq4.gif 1KB Image download
12888_2017_1557_Article_IEq5.gif 1KB Image download
12902_2017_161_Article_IEq2.gif 1KB Image download
12888_2017_1557_Article_IEq7.gif 1KB Image download
【 图 表 】

12888_2017_1557_Article_IEq7.gif

12902_2017_161_Article_IEq2.gif

12888_2017_1557_Article_IEq5.gif

12888_2017_1557_Article_IEq4.gif

12864_2016_2696_Article_IEq4.gif

12864_2017_3777_Article_IEq24.gif

12888_2017_1557_Article_IEq2.gif

12864_2017_4348_Article_IEq2.gif

12864_2015_2137_Article_IEq7.gif

12864_2016_3098_Article_IEq29.gif

12864_2016_2463_Article_IEq1.gif

12864_2017_3733_Article_IEq57.gif

12864_2016_3098_Article_IEq87.gif

12864_2017_3733_Article_IEq56.gif

12864_2017_3733_Article_IEq55.gif

12864_2017_3781_Article_IEq9.gif

12864_2017_3521_Article_IEq4.gif

12864_2017_3781_Article_IEq7.gif

12864_2016_3098_Article_IEq78.gif

12864_2017_4132_Article_IEq36.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  文献评价指标  
  下载次数:2次 浏览次数:0次