期刊论文详细信息
Genetics Selection Evolution
Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships
Research Article
Mario P. L. Calus1  Bernt Guldbrandtsen2  Mogens Sandø Lund2  Goutam Sahana2  Qianqian Zhang3 
[1] Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, The Netherlands;Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark;Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark;Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, The Netherlands;
关键词: Minor Allele Frequency;    Rare Variant;    Imputation Accuracy;    Polygenic Effect;    Sequence Kernel Association Test;   
DOI  :  10.1186/s12711-016-0238-5
 received in 2016-01-08, accepted in 2016-08-04,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

Background There is growing interest in the role of rare variants in the variation of complex traits due to increasing evidence that rare variants are associated with quantitative traits. However, association methods that are commonly used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it difficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated phenotypes. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of choice to account for both family relationships and population structure in cattle.ResultsWe observed that the power of the LMM approach was low for mapping a rare variant (defined as those that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a gene with sample sizes of 1000 or 5000.Conclusions We observed that the methods that combine multiple rare variants within a gene into a meta-variant generally had greater power to map rare variants compared to LMM. Therefore, it is recommended to use rare variant association mapping methods to map rare genetic variants that affect quantitative traits in livestock, such as bovine populations.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311096022014ZK.pdf 1630KB PDF download
12864_2015_2295_Article_IEq3.gif 1KB Image download
12864_2017_3669_Article_IEq5.gif 1KB Image download
12864_2017_3733_Article_IEq13.gif 1KB Image download
12864_2016_3105_Article_IEq15.gif 1KB Image download
12864_2017_4166_Article_IEq3.gif 1KB Image download
12864_2017_3487_Article_IEq15.gif 1KB Image download
12864_2017_3733_Article_IEq17.gif 1KB Image download
12864_2015_2300_Article_IEq24.gif 1KB Image download
12864_2017_4004_Article_IEq12.gif 1KB Image download
12864_2015_2300_Article_IEq26.gif 1KB Image download
12864_2017_3521_Article_IEq1.gif 1KB Image download
12864_2016_2392_Article_IEq1.gif 1KB Image download
12864_2017_4030_Article_IEq26.gif 1KB Image download
12864_2017_4132_Article_IEq6.gif 1KB Image download
12864_2017_4132_Article_IEq7.gif 1KB Image download
12864_2017_4186_Article_IEq33.gif 1KB Image download
12864_2017_4226_Article_IEq1.gif 1KB Image download
12864_2017_4228_Article_IEq1.gif 1KB Image download
12880_2016_176_Article_IEq10.gif 1KB Image download
12864_2015_2192_Article_IEq14.gif 1KB Image download
12888_2016_877_Article_IEq9.gif 1KB Image download
12864_2016_2871_Article_IEq10.gif 1KB Image download
12888_2016_877_Article_IEq10.gif 1KB Image download
12898_2017_155_Article_IEq33.gif 1KB Image download
12864_2016_2392_Article_IEq2.gif 1KB Image download
【 图 表 】

12864_2016_2392_Article_IEq2.gif

12898_2017_155_Article_IEq33.gif

12888_2016_877_Article_IEq10.gif

12864_2016_2871_Article_IEq10.gif

12888_2016_877_Article_IEq9.gif

12864_2015_2192_Article_IEq14.gif

12880_2016_176_Article_IEq10.gif

12864_2017_4228_Article_IEq1.gif

12864_2017_4226_Article_IEq1.gif

12864_2017_4186_Article_IEq33.gif

12864_2017_4132_Article_IEq7.gif

12864_2017_4132_Article_IEq6.gif

12864_2017_4030_Article_IEq26.gif

12864_2016_2392_Article_IEq1.gif

12864_2017_3521_Article_IEq1.gif

12864_2015_2300_Article_IEq26.gif

12864_2017_4004_Article_IEq12.gif

12864_2015_2300_Article_IEq24.gif

12864_2017_3733_Article_IEq17.gif

12864_2017_3487_Article_IEq15.gif

12864_2017_4166_Article_IEq3.gif

12864_2016_3105_Article_IEq15.gif

12864_2017_3733_Article_IEq13.gif

12864_2017_3669_Article_IEq5.gif

12864_2015_2295_Article_IEq3.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  文献评价指标  
  下载次数:2次 浏览次数:0次