期刊论文详细信息
BMC Genomics
An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.)
Research Article
Bo Chen1  Meizhong Luo1  Jiang Ye2  Jiaqin Shi2  Xinfa Wang2  Guihua Liu2  Jiepeng Zhan2  Hanzhong Wang2  Yuhua Yang2 
[1] College of Life Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China;Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 430062, Wuhan, China;
关键词: Brassica napus;    Pod number;    QTL mapping;    RNA sequencing;    DEG;    Candidate gene;   
DOI  :  10.1186/s12864-016-3402-y
 received in 2016-04-27, accepted in 2016-12-09,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundAs the most important yield component in rapeseed (Brassica napus L.), pod number is determined by a series of successive growth and development processes. Pod number shows extensive variation in rapeseed natural germplasm, which is valuable for genetic improvement. However, the genetic and especially the molecular mechanism for this kind of variation are poorly understood. In this study, we conducted QTL mapping and RNA sequencing, respectively, using the BnaZNRIL population and its two parental cultivars Zhongshuang11 and No.73290 which showed significant difference in pod number, primarily due to the difference in floral organ number.ResultA total of eight QTLs for pod number were identified using BnaZNRIL population with a high-density SNP linkage map, each was distributed on seven linkage groups and explained 5.8–11.9% of phenotypic variance. Then, they were integrated with those previously detected in BnaZNF2 population (deriving from same parents) and resulted in 15 consensus-QTLs. Of which, seven QTLs were identical to other studies, whereas the other eight should be novel.RNA sequencing of the shoot apical meristem (SAM) at the formation stage of floral bud primordia identified 9135 genes that were differentially expressed between the two parents. Gene ontology (GO) analysis showed that the top two enriched groups were S-assimilation, providing an essential nutrient for the synthesis of diverse metabolites, and polyamine metabolism, serving as second messengers that play an essential role in flowering genes initiation. KEGG analysis showed that the top three overrepresented pathways were carbohydrate (707 genes), amino acid (390 genes) and lipid metabolisms (322 genes).In silico mapping showed that 647 DEGs were located within the confidence intervals of 15 consensus QTLs. Based on annotations of Arabidopsis homologs corresponding to DEGs, nine genes related to meristem growth and development were considered as promising candidates for six QTLs.ConclusionIn this study, we discovered the first repeatable major QTL for pod number in rapeseed. In addition, RNA sequencing was performed for SAM in rapeseed, which provides new insights into the determination of floral organ number. Furthermore, the integration of DEGs and QTLs identified promising candidates for further gene cloning and mechanism study.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311095899518ZK.pdf 1427KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  文献评价指标  
  下载次数:6次 浏览次数:3次