期刊论文详细信息
BMC Genomics
Genome sequencing of high-penicillin producing industrial strain of Penicillium chrysogenum
Proceedings
Jun Yu1  Jingfa Xiao1  Jiayan Wu1  Jun Zhong2  Ying Zhao3  Fu-Qiang Wang3  Baoling Duan3  Li Zhang3  Meng Dai3  Jing Liu3  Guizhen Zheng3 
[1]CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
[2]CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
[3]University of Chinese Academy of Sciences, 100049, Beijing, China
[4]New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, 050015, Shijiazhuang, Hebei, China
关键词: Glutathione Metabolism;    Penicillin Production;    pahA Gene;    Cysteine Biosynthesis;    Penicillin Biosynthesis;   
DOI  :  10.1186/1471-2164-15-S1-S11
来源: Springer
PDF
【 摘 要 】
BackgroundDue to the importance of Penicillium chrysogenum holding in medicine, the genome of low-penicillin producing laboratorial strain Wisconsin54-1255 had been sequenced and fully annotated. Through classical mutagenesis of Wisconsin54-1255, product titers and productivities of penicillin have dramatically increased, but what underlying genome structural variations is still little known. Therefore, genome sequencing of a high-penicillin producing industrial strain is very meaningful.ResultsTo reveal more insights into the genome structural variations of high-penicillin producing strain, we sequenced an industrial strain P. chrysogenum NCPC10086. By whole genome comparative analysis, we observed a large number of mutations, insertions and deletions, and structural variations. There are 69 new genes that not exist in the genome sequence of Wisconsin54-1255 and some of them are involved in energy metabolism, nitrogen metabolism and glutathione metabolism. Most importantly, we discovered a 53.7 Kb "new shift fragment" in a seven copies of determinative penicillin biosynthesis cluster in NCPC10086 and the arrangement type of amplified region is unique. Moreover, we presented two large-scale translocations in NCPC10086, containing genes involved energy, nitrogen metabolism and peroxysome pathway. At last, we found some non-synonymous mutations in the genes participating in homogentisate pathway or working as regulators of penicillin biosynthesis.ConclusionsWe provided the first high-quality genome sequence of industrial high-penicillin strain of P. chrysogenum and carried out a comparative genome analysis with a low-producing experimental strain. The genomic variations we discovered are related with energy metabolism, nitrogen metabolism and so on. These findings demonstrate the potential information for insights into the high-penicillin yielding mechanism and metabolic engineering in the future.
【 授权许可】

Unknown   
© Wang et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311095880932ZK.pdf 3276KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  文献评价指标  
  下载次数:0次 浏览次数:0次