期刊论文详细信息
BMC Complementary and Alternative Medicine
Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking
Research Article
Abdullah Al Mamun1  Masanori Katakura1  Osamu Shido1  Michio Hashimoto1  Shahdat Hossain2 
[1]Department of Environmental Physiology, Shimane University Faculty of Medicine, 693-8501, Izumo, Japan
[2]Department of Environmental Physiology, Shimane University Faculty of Medicine, 693-8501, Izumo, Japan
[3]Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
关键词: Asiaticoside;    Amyloid fibrillation;    Fluorescence correlation spectroscopy;    Neurotoxicity;    Molecular Docking;   
DOI  :  10.1186/s12906-015-0620-9
 received in 2014-12-31, accepted in 2015-03-16,  发布年份 2015
来源: Springer
PDF
【 摘 要 】
BackgroundIdentifying agents that inhibit amyloid beta peptide (Aβ) aggregation is the ultimate goal for slowing Alzheimer’s disease (AD) progression. This study investigated whether the glycoside asiaticoside inhibits Aβ1–42 fibrillation in vitro.MethodsFluorescence correlation spectroscopy (FCS), evaluating the Brownian diffusion times of moving particles in a small confocal volume at the single-molecule level, was used. If asiaticoside inhibits early Aβ1–42 fibrillation steps, more Aβs would remain free and rapidly diffuse in the confocal volume. In contrast, “weaker or no inhibition” permits a greater number of Aβs to polymerize into oligomers, leading to fibers and gives rise to slow diffusion times in the solution. Trace amounts of 5-carboxytetramethylrhodamine (TAMRA)-labeled Aβ1–42 in the presence of excess unlabeled Aβ1–42 (10 μM) was used as a fluorescent probe. Steady-state and kinetic-Thioflavin T (ThT) fluorospectroscopy, laser-scanning fluorescence microscopy (LSM), and transmission electron microscopy (TEM) were also used to monitor fibrillation. Binding of asiaticoside with Aβ1–42 at the atomic level was computationally examined using the Molegro Virtual Docker and PatchDock.ResultsWith 1 h of incubation time for aggregation, FCS data analysis revealed that the diffusion time of TAMRA-Aβ1–42 was 208 ± 4 μs, which decreased to 164 ± 8.0 μs in the presence of asiaticoside, clearly indicating that asiaticoside inhibited the early stages Aβ1–42 of fibrillation, leaving more free Aβs in the solution and permitting their rapid diffusion in the confocal volume. The inhibitory effects were also evidenced by reduced fiber formation as assessed by steady-state and kinetic ThT fluorospectroscopy, LSM, and TEM. Asiaticoside elongated the lag phase of Aβ1–42 fibrillation, indicating the formation of smaller amyloid species were impaired in the presence of asiaticoside. Molecular docking revealed that asiaticoside binds with amyloid intra- and inter-molecular amino acid residues, which are responsible for β-sheet formation and longitudinal extension of fibrils.ConclusionFinally, asiaticoside prevents amyloidogenesis that precedes neurodegeneration in patients with Alzheimer’s disease.
【 授权许可】

Unknown   
© Hossain et al.; licensee BioMed Central. 2015. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311095865811ZK.pdf 6118KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  文献评价指标  
  下载次数:0次 浏览次数:0次