期刊论文详细信息
BMC Plant Biology
Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium
Research Article
Kent D Chapman1  Matthew A Jenks2  Daniel C Ilut3  Michael A Gore3  Justin T Page4  Zach Liechty4  Joshua A Udall4  Olga P Yurchenko5  John M Dyer5  Jon C Millhollon5  Jay J Inmon5  Sunjung Park6 
[1] Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, 76203, Denton, TX, USA;Division of Plant and Soil Sciences, West Virginia University, 2650, Morgantown, WV, USA;Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, 14853, Ithaca, NY, USA;Plant and Wildlife Science Department, Brigham Young University, 84602, Provo, UT, USA;USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, 85138, Maricopa, AZ, USA;USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, 85138, Maricopa, AZ, USA;Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, 76203, Denton, TX, USA;
关键词: Chilling tolerance;    Cotton;    Drought;    Fatty acid desaturase;    Gossypium;    Linolenic acid;    Omega-3 fatty acid;   
DOI  :  10.1186/s12870-014-0312-5
 received in 2014-06-26, accepted in 2014-10-28,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundThe majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation.ResultsEleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings.ConclusionsThe omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. Collectively, these data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.

【 授权许可】

Unknown   
© Yurchenko et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311095858974ZK.pdf 2613KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  文献评价指标  
  下载次数:6次 浏览次数:0次