期刊论文详细信息
BMC Bioinformatics
Assessing statistical significance in causal graphs
Methodology Article
Ahmed Enayetallah1  Leonid Chindelevitch2  Daniel Ziemek2  Po-Ru Loh3  Bonnie Berger3 
[1] Compound Safety Prediction, Pfizer Worldwide Research & Development, Cambridge, MA, USA;Computational Sciences Center of Emphasis, Pfizer Worldwide Research & Development, Cambridge, MA, USA;Mathematics Department and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA;
关键词: Graph Randomization;    Gene Expression Dataset;    Causal Network;    Thresholding Algorithm;    Causal Graph;   
DOI  :  10.1186/1471-2105-13-35
 received in 2011-07-29, accepted in 2012-02-20,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundCausal graphs are an increasingly popular tool for the analysis of biological datasets. In particular, signed causal graphs--directed graphs whose edges additionally have a sign denoting upregulation or downregulation--can be used to model regulatory networks within a cell. Such models allow prediction of downstream effects of regulation of biological entities; conversely, they also enable inference of causative agents behind observed expression changes. However, due to their complex nature, signed causal graph models present special challenges with respect to assessing statistical significance. In this paper we frame and solve two fundamental computational problems that arise in practice when computing appropriate null distributions for hypothesis testing.ResultsFirst, we show how to compute a p-value for agreement between observed and model-predicted classifications of gene transcripts as upregulated, downregulated, or neither. Specifically, how likely are the classifications to agree to the same extent under the null distribution of the observed classification being randomized? This problem, which we call "Ternary Dot Product Distribution" owing to its mathematical form, can be viewed as a generalization of Fisher's exact test to ternary variables. We present two computationally efficient algorithms for computing the Ternary Dot Product Distribution and investigate its combinatorial structure analytically and numerically to establish computational complexity bounds.Second, we develop an algorithm for efficiently performing random sampling of causal graphs. This enables p-value computation under a different, equally important null distribution obtained by randomizing the graph topology but keeping fixed its basic structure: connectedness and the positive and negative in- and out-degrees of each vertex. We provide an algorithm for sampling a graph from this distribution uniformly at random. We also highlight theoretical challenges unique to signed causal graphs; previous work on graph randomization has studied undirected graphs and directed but unsigned graphs.ConclusionWe present algorithmic solutions to two statistical significance questions necessary to apply the causal graph methodology, a powerful tool for biological network analysis. The algorithms we present are both fast and provably correct. Our work may be of independent interest in non-biological contexts as well, as it generalizes mathematical results that have been studied extensively in other fields.

【 授权许可】

Unknown   
© Chindelevitch et al; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311095539541ZK.pdf 818KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  文献评价指标  
  下载次数:4次 浏览次数:0次