期刊论文详细信息
BMC Bioinformatics
Reliable Biomarker discovery from Metagenomic data via RegLRSD algorithm
Research Article
Erchin Serpedin1  Mustafa Alshawaqfeh1  Ahmad Bashaireh1  Jan Suchodolski2 
[1] Bioinformatics and Genomic Signal Processing Lab, ECEN Dept., Texas A&M University, 77843-3128, College Station, TX, USA;College of Veterinary Medicine and Biomedical Sciences, Gastrointestinal Laboratory, Texas A&M University, 77843-3128, College Station, TX, USA;
关键词: Biomarker detection;    Metagenomics;    Matrix decomposition;    Alternating direction method of multipliers;    Augmented Lagrangian;   
DOI  :  10.1186/s12859-017-1738-1
 received in 2017-04-24, accepted in 2017-06-22,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundBiomarker detection presents itself as a major means of translating biological data into clinical applications. Due to the recent advances in high throughput sequencing technologies, an increased number of metagenomics studies have suggested the dysbiosis in microbial communities as potential biomarker for certain diseases. The reproducibility of the results drawn from metagenomic data is crucial for clinical applications and to prevent incorrect biological conclusions. The variability in the sample size and the subjects participating in the experiments induce diversity, which may drastically change the outcome of biomarker detection algorithms. Therefore, a robust biomarker detection algorithm that ensures the consistency of the results irrespective of the natural diversity present in the samples is needed.ResultsToward this end, this paper proposes a novel Regularized Low Rank-Sparse Decomposition (RegLRSD) algorithm. RegLRSD models the bacterial abundance data as a superposition between a sparse matrix and a low-rank matrix, which account for the differentially and non-differentially abundant microbes, respectively. Hence, the biomarker detection problem is cast as a matrix decomposition problem. In order to yield more consistent and solid biological conclusions, RegLRSD incorporates the prior knowledge that the irrelevant microbes do not exhibit significant variation between samples belonging to different phenotypes. Moreover, an efficient algorithm to extract the sparse matrix is proposed. Comprehensive comparisons of RegLRSD with the state-of-the-art algorithms on three realistic datasets are presented. The obtained results demonstrate that RegLRSD consistently outperforms the other algorithms in terms of reproducibility performance and provides a marker list with high classification accuracy.ConclusionsThe proposed RegLRSD algorithm for biomarker detection provides high reproducibility and classification accuracy performance regardless of the dataset complexity and the number of selected biomarkers. This renders RegLRSD as a reliable and powerful tool for identifying potential metagenomic biomarkers.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311095451958ZK.pdf 1253KB PDF download
12864_2017_4004_Article_IEq10.gif 2KB Image download
12864_2017_4116_Article_IEq2.gif 1KB Image download
12864_2016_2793_Article_IEq6.gif 1KB Image download
12864_2017_4004_Article_IEq11.gif 1KB Image download
12864_2016_2821_Article_IEq60.gif 1KB Image download
12864_2015_1945_Article_IEq4.gif 1KB Image download
12864_2017_4186_Article_IEq31.gif 1KB Image download
12864_2017_4132_Article_IEq5.gif 1KB Image download
12864_2017_4186_Article_IEq32.gif 1KB Image download
12864_2016_2756_Article_IEq2.gif 1KB Image download
12888_2016_877_Article_IEq7.gif 1KB Image download
12864_2017_3503_Article_IEq1.gif 1KB Image download
12888_2016_877_Article_IEq8.gif 1KB Image download
12864_2015_2192_Article_IEq13.gif 1KB Image download
12870_2017_1059_Article_IEq7.gif 1KB Image download
12864_2017_3487_Article_IEq15.gif 1KB Image download
12864_2017_3733_Article_IEq17.gif 1KB Image download
12864_2015_2300_Article_IEq24.gif 1KB Image download
12864_2017_4004_Article_IEq12.gif 1KB Image download
12864_2015_2300_Article_IEq26.gif 1KB Image download
12864_2017_3521_Article_IEq1.gif 1KB Image download
12864_2016_2392_Article_IEq1.gif 1KB Image download
12864_2017_4030_Article_IEq26.gif 1KB Image download
12864_2017_4132_Article_IEq6.gif 1KB Image download
12864_2017_4132_Article_IEq7.gif 1KB Image download
12864_2017_4186_Article_IEq33.gif 1KB Image download
12864_2017_4226_Article_IEq1.gif 1KB Image download
12864_2017_4228_Article_IEq1.gif 1KB Image download
12880_2016_176_Article_IEq10.gif 1KB Image download
12864_2015_2192_Article_IEq14.gif 1KB Image download
【 图 表 】

12864_2015_2192_Article_IEq14.gif

12880_2016_176_Article_IEq10.gif

12864_2017_4228_Article_IEq1.gif

12864_2017_4226_Article_IEq1.gif

12864_2017_4186_Article_IEq33.gif

12864_2017_4132_Article_IEq7.gif

12864_2017_4132_Article_IEq6.gif

12864_2017_4030_Article_IEq26.gif

12864_2016_2392_Article_IEq1.gif

12864_2017_3521_Article_IEq1.gif

12864_2015_2300_Article_IEq26.gif

12864_2017_4004_Article_IEq12.gif

12864_2015_2300_Article_IEq24.gif

12864_2017_3733_Article_IEq17.gif

12864_2017_3487_Article_IEq15.gif

12870_2017_1059_Article_IEq7.gif

12864_2015_2192_Article_IEq13.gif

12888_2016_877_Article_IEq8.gif

12864_2017_3503_Article_IEq1.gif

12888_2016_877_Article_IEq7.gif

12864_2016_2756_Article_IEq2.gif

12864_2017_4186_Article_IEq32.gif

12864_2017_4132_Article_IEq5.gif

12864_2017_4186_Article_IEq31.gif

12864_2015_1945_Article_IEq4.gif

12864_2016_2821_Article_IEq60.gif

12864_2017_4004_Article_IEq11.gif

12864_2016_2793_Article_IEq6.gif

12864_2017_4116_Article_IEq2.gif

12864_2017_4004_Article_IEq10.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  文献评价指标  
  下载次数:1次 浏览次数:0次