期刊论文详细信息
BMC Genomics
Functional regression method for whole genome eQTL epistasis analysis with sequencing data
Methodology Article
Li Jin1  Momiao Xiong2  Kelin Xu3 
[1] State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 200438, Shanghai, China;State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 200438, Shanghai, China;Department of Biostatistics, Human Genetics Center, The University of Texas Health Science Center at Houston, 77030, Houston, TX, USA;Human Genetics Center, The University of Texas Health Science Center at Houston, P.O. Box 20186, 77225, Houston, TX, USA;State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 200438, Shanghai, China;School of Data Science and Institute for Big Data, Fudan University, 200433, Shanghai, China;
关键词: Gene-gene interaction;    Multivariate functional regression;    Functional regression models;    RNA-seq;    Next-generation sequencing;    Association studies;    eQTL;   
DOI  :  10.1186/s12864-017-3777-4
 received in 2016-11-21, accepted in 2017-05-09,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundEpistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges.MethodsWe develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions.ResultsBy large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction identified using FRGM, RPKM and DESeq were 16,2361, 260 and 51, respectively, from the 350 European samples.ConclusionsThe proposed FRGM for epistasis analysis of RNA-seq can capture isoform and position-level information and will have a broad application. Both simulations and real data analysis highlight the potential for the FRGM to be a good choice of the epistatic analysis with sequencing data.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311094899297ZK.pdf 3622KB PDF download
12864_2017_3670_Article_IEq15.gif 1KB Image download
12864_2017_3670_Article_IEq16.gif 1KB Image download
12902_2016_104_Article_IEq1.gif 1KB Image download
12864_2017_3777_Article_IEq4.gif 1KB Image download
12864_2017_3777_Article_IEq5.gif 1KB Image download
12864_2017_4271_Article_IEq2.gif 1KB Image download
12864_2017_3777_Article_IEq7.gif 1KB Image download
12864_2017_4132_Article_IEq34.gif 1KB Image download
12864_2017_3521_Article_IEq2.gif 1KB Image download
12864_2017_3521_Article_IEq3.gif 1KB Image download
12864_2017_3777_Article_IEq11.gif 1KB Image download
12864_2017_3777_Article_IEq12.gif 1KB Image download
12864_2017_3777_Article_IEq13.gif 1KB Image download
12864_2017_4132_Article_IEq42.gif 1KB Image download
12864_2017_3777_Article_IEq15.gif 1KB Image download
12864_2017_3777_Article_IEq16.gif 1KB Image download
12864_2017_3777_Article_IEq17.gif 1KB Image download
12864_2017_3777_Article_IEq18.gif 1KB Image download
12864_2017_4132_Article_IEq44.gif 1KB Image download
12864_2017_3777_Article_IEq20.gif 1KB Image download
12864_2017_3777_Article_IEq21.gif 1KB Image download
12864_2017_3777_Article_IEq22.gif 1KB Image download
12864_2017_3777_Article_IEq23.gif 1KB Image download
12864_2017_3777_Article_IEq24.gif 1KB Image download
【 图 表 】

12864_2017_3777_Article_IEq24.gif

12864_2017_3777_Article_IEq23.gif

12864_2017_3777_Article_IEq22.gif

12864_2017_3777_Article_IEq21.gif

12864_2017_3777_Article_IEq20.gif

12864_2017_4132_Article_IEq44.gif

12864_2017_3777_Article_IEq18.gif

12864_2017_3777_Article_IEq17.gif

12864_2017_3777_Article_IEq16.gif

12864_2017_3777_Article_IEq15.gif

12864_2017_4132_Article_IEq42.gif

12864_2017_3777_Article_IEq13.gif

12864_2017_3777_Article_IEq12.gif

12864_2017_3777_Article_IEq11.gif

12864_2017_3521_Article_IEq3.gif

12864_2017_3521_Article_IEq2.gif

12864_2017_4132_Article_IEq34.gif

12864_2017_3777_Article_IEq7.gif

12864_2017_4271_Article_IEq2.gif

12864_2017_3777_Article_IEq5.gif

12864_2017_3777_Article_IEq4.gif

12902_2016_104_Article_IEq1.gif

12864_2017_3670_Article_IEq16.gif

12864_2017_3670_Article_IEq15.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  文献评价指标  
  下载次数:417次 浏览次数:0次