期刊论文详细信息
BMC Bioinformatics
BicPAMS: software for biological data analysis with pattern-based biclustering
Software
Sara C. Madeira1  Francisco L. Ferreira1  Rui Henriques1 
[1] INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal;
关键词: Association Rule;    Application Programming Interface;    Pattern Mining;    Coherency Strength;    Merit Function;   
DOI  :  10.1186/s12859-017-1493-3
 received in 2016-03-22, accepted in 2017-01-21,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundBiclustering has been largely applied for the unsupervised analysis of biological data, being recognised today as a key technique to discover putative modules in both expression data (subsets of genes correlated in subsets of conditions) and network data (groups of coherently interconnected biological entities). However, given its computational complexity, only recent breakthroughs on pattern-based biclustering enabled efficient searches without the restrictions that state-of-the-art biclustering algorithms place on the structure and homogeneity of biclusters. As a result, pattern-based biclustering provides the unprecedented opportunity to discover non-trivial yet meaningful biological modules with putative functions, whose coherency and tolerance to noise can be tuned and made problem-specific.MethodsTo enable the effective use of pattern-based biclustering by the scientific community, we developed BicPAMS (Biclustering based on PAttern Mining Software), a software that: 1) makes available state-of-the-art pattern-based biclustering algorithms (BicPAM (Henriques and Madeira, Alg Mol Biol 9:27, 2014), BicNET (Henriques and Madeira, Alg Mol Biol 11:23, 2016), BicSPAM (Henriques and Madeira, BMC Bioinforma 15:130, 2014), BiC2PAM (Henriques and Madeira, Alg Mol Biol 11:1–30, 2016), BiP (Henriques and Madeira, IEEE/ACM Trans Comput Biol Bioinforma, 2015), DeBi (Serin and Vingron, AMB 6:1–12, 2011) and BiModule (Okada et al., IPSJ Trans Bioinf 48(SIG5):39–48, 2007)); 2) consistently integrates their dispersed contributions; 3) further explores additional accuracy and efficiency gains; and 4) makes available graphical and application programming interfaces.ResultsResults on both synthetic and real data confirm the relevance of BicPAMS for biological data analysis, highlighting its essential role for the discovery of putative modules with non-trivial yet biologically significant functions from expression and network data.ConclusionsBicPAMS is the first biclustering tool offering the possibility to: 1) parametrically customize the structure, coherency and quality of biclusters; 2) analyze large-scale biological networks; and 3) tackle the restrictive assumptions placed by state-of-the-art biclustering algorithms. These contributions are shown to be key for an adequate, complete and user-assisted unsupervised analysis of biological data.SoftwareBicPAMS and its tutorial available in http://www.bicpams.com.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311094652995ZK.pdf 2996KB PDF download
12864_2017_3777_Article_IEq20.gif 1KB Image download
12864_2017_3487_Article_IEq65.gif 1KB Image download
12864_2017_3777_Article_IEq21.gif 1KB Image download
12864_2017_4020_Article_IEq21.gif 1KB Image download
12864_2017_3777_Article_IEq22.gif 1KB Image download
12888_2017_1557_Article_IEq1.gif 1KB Image download
12864_2017_3777_Article_IEq24.gif 1KB Image download
12888_2017_1557_Article_IEq4.gif 1KB Image download
12864_2015_2137_Article_IEq11.gif 1KB Image download
12888_2017_1557_Article_IEq6.gif 1KB Image download
12864_2017_4363_Article_IEq6.gif 1KB Image download
12888_2017_1557_Article_IEq8.gif 1KB Image download
12888_2017_1557_Article_IEq9.gif 1KB Image download
12864_2016_3263_Article_IEq8.gif 1KB Image download
12864_2016_3263_Article_IEq11.gif 1KB Image download
12864_2016_3098_Article_IEq39.gif 1KB Image download
12864_2016_2789_Article_IEq51.gif 1KB Image download
12864_2017_3604_Article_IEq3.gif 1KB Image download
12864_2016_3263_Article_IEq15.gif 1KB Image download
12864_2017_3604_Article_IEq5.gif 1KB Image download
12893_2017_312_Article_IEq1.gif 1KB Image download
12864_2016_2443_Article_IEq12.gif 1KB Image download
12864_2017_4025_Article_IEq2.gif 1KB Image download
【 图 表 】

12864_2017_4025_Article_IEq2.gif

12864_2016_2443_Article_IEq12.gif

12893_2017_312_Article_IEq1.gif

12864_2017_3604_Article_IEq5.gif

12864_2016_3263_Article_IEq15.gif

12864_2017_3604_Article_IEq3.gif

12864_2016_2789_Article_IEq51.gif

12864_2016_3098_Article_IEq39.gif

12864_2016_3263_Article_IEq11.gif

12864_2016_3263_Article_IEq8.gif

12888_2017_1557_Article_IEq9.gif

12888_2017_1557_Article_IEq8.gif

12864_2017_4363_Article_IEq6.gif

12888_2017_1557_Article_IEq6.gif

12864_2015_2137_Article_IEq11.gif

12888_2017_1557_Article_IEq4.gif

12864_2017_3777_Article_IEq24.gif

12888_2017_1557_Article_IEq1.gif

12864_2017_3777_Article_IEq22.gif

12864_2017_4020_Article_IEq21.gif

12864_2017_3777_Article_IEq21.gif

12864_2017_3487_Article_IEq65.gif

12864_2017_3777_Article_IEq20.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  文献评价指标  
  下载次数:13次 浏览次数:0次