期刊论文详细信息
BMC Plant Biology
Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativalow silicon genes, and endogenous phytohormones
Research Article
Abdul Latif Khan1  Jong-Guk Kim2  Duk-Hwan Kim3  Muhammad Waqas3  Jae-Ho Shin3  Hee-Young Jung3  Seung-Yeol Lee3  Yoon-Ha Kim3  Kyung-Min Kim3  In-Jung Lee3 
[1] Department of Biological Science & Chemistry, University of Nizwa, 616, Nizwa, Oman;Department of Life Sciences and Biotechnology, Kyungpook National University, 702-701, Daegu, Republic of Korea;School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, 702-701, Daegu, Republic of Korea;
关键词: Silicon;    Heavy metal stress;    Root physiology;    Phytohormones;    P-type heavy metal ATPase;    Oryza sativa;    Low silicon;   
DOI  :  10.1186/1471-2229-14-13
 received in 2013-02-13, accepted in 2014-01-07,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundSilicon (Si) application has been known to enhance the tolerance of plants against abiotic stresses. However, the protective mechanism of Si under heavy metals contamination is poorly understood. The aim of this study was to assess the role of Si in counteracting toxicity due to cadmium (Cd) and copper (Cu) in rice plants (Oryza sativa).ResultsSi significantly improved the growth and biomass of rice plants and reduced the toxic effects of Cd/Cu after different stress periods. Si treatment ameliorated root function and structure compared with non-treated rice plants, which suffered severe root damage. In the presence of Si, the Cd/Cu concentration was significantly lower in rice plants, and there was also a reduction in lipid peroxidation and fatty acid desaturation in plant tissues. The reduced uptake of metals in the roots modulated the signaling of phytohormones involved in responses to stress and host defense, such as abscisic acid, jasmonic acid, and salicylic acid. Furthermore, the low concentration of metals significantly down regulated the mRNA expression of enzymes encoding heavy metal transporters (OsHMA2 and OsHMA3) in Si-metal-treated rice plants. Genes responsible for Si transport (OsLSi1 and OsLSi2), showed a significant up-regulation of mRNA expression with Si treatment in rice plants.ConclusionThe present study supports the active role of Si in the regulation of stresses from heavy metal exposure through changes in root morphology.

【 授权许可】

Unknown   
© Kim et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311094203086ZK.pdf 2575KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  文献评价指标  
  下载次数:7次 浏览次数:1次