期刊论文详细信息
BMC Plant Biology
A pair of orthologs of a leucine-rich repeat receptor kinase-like disease resistance gene family regulates rice response to raised temperature
Research Article
Shiping Wang1  Xianghua Li1  Jing Zhao1  Haitao Zhang1  Yinglong Cao1  Jinghua Xiao1 
[1] National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China;
关键词: Transgenic Plant;    Kinase Domain;    Rice Variety;    Heat Shock Element;    Lesion Mimic;   
DOI  :  10.1186/1471-2229-11-160
 received in 2011-06-30, accepted in 2011-11-15,  发布年份 2011
来源: Springer
PDF
【 摘 要 】

BackgroundRice Xa3/Xa26 disease-resistance gene encodes a leucine-rich repeat (LRR) receptor kinase-type protein against Xanthomonas oryzae pv. oryzae (Xoo) and belongs to a multigene family. However, the functions of most genes in this family are unknown.ResultsHere we report that two orthologs of this family, the NRKe from rice variety Nipponbare and 9RKe from variety 93-11 at the RKe locus, have similar functions although they encode different proteins. This pair of orthologs could not mediate resistance to Xoo, but they were transcriptionally induced by raised temperature. Transcriptional activation of NRKe or 9RKe resulted in the formation of temperature-sensitive lesion mimics, which were spots of dead cells associated with accumulation of superoxides, in different organs of the transgenic plants. These plants were more sensitive to high temperature shock than wild-type controls. Transgenic plants carrying a chimeric protein consisting of the LRR domain of NRKe and the kinase domain of Xa3/Xa26 developed the same lesion mimics as the NRKe-transgenic plants, whereas transgenic plants carrying another chimeric protein consisting of the LRR domain of Xa3/Xa26 and the kinase domain of NRKe were free of lesion mimic. All the transgenic plants carrying a chimeric protein were susceptible to Xoo.ConclusionThese results suggest that the RKe locus is involved in rice response to raised temperature. The LRR domain of RKe protein appears to be important to sense increased temperature. The RKe-involved temperature-related pathway and Xa3/Xa26-mediated disease-resistance pathway may partially overlap.

【 授权许可】

Unknown   
© Zhang et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311094174611ZK.pdf 1896KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:6次 浏览次数:0次