期刊论文详细信息
BMC Genomics
Inference of kinship using spatial distributions of SNPs for genome-wide association studies
Methodology Article
Liang Chen1  Hyokyeong Lee1 
[1] Department of Biological Sciences, Molecular and Computational Biology, University of Southern California, 90089, Los Angeles, California, USA;
关键词: GWAS;    HapMap;    Kinship;    Population structure;    SNP;    1000 Genomes;   
DOI  :  10.1186/s12864-016-2696-0
 received in 2015-04-07, accepted in 2016-05-06,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundGenome-wide association studies (GWASs) are powerful in identifying genetic loci which cause complex traits of common diseases. However, it is well known that inappropriately accounting for pedigree or population structure leads to spurious associations. GWASs have often encountered increased type I error rates due to the correlated genotypes of cryptically related individuals or subgroups. Therefore, accurate pedigree information is crucial for successful GWASs.ResultsWe propose a distance-based method KIND to estimate kinship coefficients among individuals. Our method utilizes the spatial distribution of SNPs in the genome that represents how far each minor-allele variant is located from its neighboring minor-allele variants. The SNP distribution of each individual was presented in a feature vector in Euclidean space, and then the kinship coefficient was inferred from the two vectors of each individual pair. We demonstrate that the distance information can measure the similarity of genetic variants of individuals accurately and efficiently. We applied our method to a synthetic data set and two real data sets (i.e. the HapMap phase III and the 1000 genomes data). We investigated the estimation accuracy of kinship coefficients not only within homogeneous populations but also for a population with extreme stratification.ConclusionsOur method KIND usually produces more accurate and more robust kinship coefficient estimates than existing methods especially for populations with extreme stratification. It can serve as an important and very efficient tool for GWASs.

【 授权许可】

CC BY   
© Lee and Chen. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311093835427ZK.pdf 986KB PDF download
12864_2017_3733_Article_IEq60.gif 1KB Image download
12864_2017_4348_Article_IEq2.gif 1KB Image download
12888_2017_1557_Article_IEq3.gif 1KB Image download
12864_2016_2696_Article_IEq4.gif 1KB Image download
12864_2017_3733_Article_IEq66.gif 1KB Image download
12902_2017_161_Article_IEq2.gif 1KB Image download
12864_2017_3783_Article_IEq1.gif 1KB Image download
【 图 表 】

12864_2017_3783_Article_IEq1.gif

12902_2017_161_Article_IEq2.gif

12864_2017_3733_Article_IEq66.gif

12864_2016_2696_Article_IEq4.gif

12888_2017_1557_Article_IEq3.gif

12864_2017_4348_Article_IEq2.gif

12864_2017_3733_Article_IEq60.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  文献评价指标  
  下载次数:58次 浏览次数:0次