期刊论文详细信息
BMC Bioinformatics
An efficient algorithmic approach for mass spectrometry-based disulfide connectivity determination using multi-ion analysis
Research
Ten-Yang Yen1  Rahul Singh2  William Murad2 
[1] Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, 94132, San Francisco, CA, USA;Department of Computer Science, San Francisco State University, 1600 Holloway Avenue, 94132, San Francisco, CA, USA;
关键词: Disulfide Bond;    Polynomial Time Complexity;    Maximum Weight Match;    Initial Match;    Match Threshold;   
DOI  :  10.1186/1471-2105-12-S1-S12
来源: Springer
PDF
【 摘 要 】

BackgroundDetermining the disulfide (S-S) bond pattern in a protein is often crucial for understanding its structure and function. In recent research, mass spectrometry (MS) based analysis has been applied to this problem following protein digestion under both partial reduction and non-reduction conditions. However, this paradigm still awaits solutions to certain algorithmic problems fundamental amongst which is the efficient matching of an exponentially growing set of putative S-S bonded structural alternatives to the large amounts of experimental spectrometric data. Current methods circumvent this challenge primarily through simplifications, such as by assuming only the occurrence of certain ion-types (b-ions and y-ions) that predominate in the more popular dissociation methods, such as collision-induced dissociation (CID). Unfortunately, this can adversely impact the quality of results.MethodWe present an algorithmic approach to this problem that can, with high computational efficiency, analyze multiple ions types (a, b, bo, b*, c, x, y, yo, y*, and z) and deal with complex bonding topologies, such as inter/intra bonding involving more than two peptides. The proposed approach combines an approximation algorithm-based search formulation with data driven parameter estimation. This formulation considers only those regions of the search space where the correct solution resides with a high likelihood. Putative disulfide bonds thus obtained are finally combined in a globally consistent pattern to yield the overall disulfide bonding topology of the molecule. Additionally, each bond is associated with a confidence score, which aids in interpretation and assimilation of the results.ResultsThe method was tested on nine different eukaryotic Glycosyltransferases possessing disulfide bonding topologies of varying complexity. Its performance was found to be characterized by high efficiency (in terms of time and the fraction of search space considered), sensitivity, specificity, and accuracy. The method was also compared with other techniques at the state-of-the-art. It was found to perform as well or better than the competing techniques. An implementation is available at: http://tintin.sfsu.edu/~whemurad/disulfidebond.ConclusionsThis research addresses some of the significant challenges in MS-based disulfide bond determination. To the best of our knowledge, this is the first algorithmic work that can consider multiple ion types in this problem setting while simultaneously ensuring polynomial time complexity and high accuracy of results.

【 授权许可】

Unknown   
© Murad et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311093443849ZK.pdf 3960KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  文献评价指标  
  下载次数:1次 浏览次数:0次