期刊论文详细信息
BMC Cell Biology
BMP signaling balances proliferation and differentiation of muscle satellite cell descendants
Research Article
Sabine Schneider1  Manuela Wuelling1  Andrea Vortkamp1  Melanie Friedrichs2  Florian Wirsdöerfer3  Stefanie B Flohé3 
[1] Center for Medical Biotechnology, Faculty of Biology, Department of Developmental Biology, University of Duisburg-Essen, D-45117, Essen, Germany;Center for Medical Biotechnology, Faculty of Biology, Department of Developmental Biology, University of Duisburg-Essen, D-45117, Essen, Germany;Department of Paediatrics, University Hospital of Essen, D-45147, Essen, Germany;Surgical Research, Department of Trauma Surgery, University Hospital Essen, D-45147, Essen, Germany;
关键词: Satellite Cell;    C2C12 Cell;    Myogenic Differentiation;    Mononucleated Cell;    Cell Cycle Exit;   
DOI  :  10.1186/1471-2121-12-26
 received in 2010-06-08, accepted in 2011-06-06,  发布年份 2011
来源: Springer
PDF
【 摘 要 】

BackgroundThe capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors.ResultsHere we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation.ConclusionOur data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.

【 授权许可】

Unknown   
© Friedrichs et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311093135113ZK.pdf 11149KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  文献评价指标  
  下载次数:0次 浏览次数:0次