期刊论文详细信息
BMC Genomics
Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing
Research Article
Qiang Zhou1  Xinhai Li2  Jianfeng Weng2  Changlin Liu2  Hui Wang2  Fang Liu2  Le Dong2  Chuanxiao Xie2 
[1] Anhui Agricultural University, 230036, Hefei, Anhui Province, China;Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, 100081, Beijing, China;
关键词: Maize;    Kernel row number;    Specific-locus amplified fragment sequencing;    Bulked segregant RNA sequencing;   
DOI  :  10.1186/s12864-016-3240-y
 received in 2016-06-28, accepted in 2016-11-01,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundThe maize kernel row number (KRN) is a key component that contributes to grain yield and has high broad-sense heritability (H2). Quantitative trait locus/loci (QTL) mapping using a high-density genetic map is a powerful approach to detecting loci that are responsible for traits of interest. Bulked segregant ribonucleic acid (RNA) sequencing (BSR-seq) is another rapid and cost-effective strategy to identify QTL. Combining QTL mapping using a high-density genetic map and BSR-seq may dissect comprehensively the genetic architecture underlying the maize KRN.ResultsA panel of 300 F2 individuals derived from inbred lines abe2 and B73 were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 4,579 high-quality polymorphic SLAF markers were obtained and used to construct a high-density genetic map with a total length of 2,123 centimorgan (cM) and an average distance between adjacent markers of 0.46 cM. Combining the genetic map and KRN of F2 individuals, four QTL (qKRN1, qKRN2, qKRN5, and qKRN8-1) were identified on chromosomes 1, 2, 5, and 8, respectively. The physical intervals of these four QTL ranged from 4.36 Mb for qKRN8-1 to 7.11 Mb for qKRN1 with an average value of 6.08 Mb. Based on high-throughput sequencing of two RNA pools bulked from leaves of plants with extremely high and low KRNs, two QTL were detected on chromosome 8 in the 10–25 Mb (BSR_QTL1) and 60–150 Mb (BSR_QTL2) intervals. According to the physical positions of these QTL, qKRN8-1 was included by BSR_QTL2. In addition, qKRN8-1 was validated using QTL mapping with a recombinant inbred lines population that was derived from inbred lines abe2 and B73.ConclusionsIn this study, we proved that combining QTL mapping using a high-density genetic map and BSR-seq is a powerful and cost-effective approach to comprehensively revealing genetic architecture underlying traits of interest. The QTL for the KRN detected in this study, especially qKRN8-1, can be used for performing fine mapping experiments and marker-assisted selection in maize breeding.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311093007323ZK.pdf 870KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  文献评价指标  
  下载次数:12次 浏览次数:8次