期刊论文详细信息
BMC Bioinformatics
A powerful score-based statistical test for group difference in weighted biological networks
Methodology Article
Fuzhong Xue1  Zhongshang Yuan1  Jiadong Ji1  Xiaoshuai Zhang1 
[1] Department of Biostatistics, School of Public Health, Shandong University, PO Box 100, 250012, Jinan, Shandong, China;
关键词: Network medicine;    Systems epidemiology;    Score-based statistical test;    Network comparison;   
DOI  :  10.1186/s12859-016-0916-x
 received in 2015-09-11, accepted in 2016-01-29,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundComplex disease is largely determined by a number of biomolecules interwoven into networks, rather than a single biomolecule. A key but inadequately addressed issue is how to test possible differences of the networks between two groups. Group-level comparison of network properties may shed light on underlying disease mechanisms and benefit the design of drug targets for complex diseases. We therefore proposed a powerful score-based statistic to detect group difference in weighted networks, which simultaneously capture the vertex changes and edge changes.ResultsSimulation studies indicated that the proposed network difference measure (NetDifM) was stable and outperformed other methods existed, under various sample sizes and network topology structure. One application to real data about GWAS of leprosy successfully identified the specific gene interaction network contributing to leprosy. For additional gene expression data of ovarian cancer, two candidate subnetworks, PI3K-AKT and Notch signaling pathways, were considered and identified respectively.ConclusionsThe proposed method, accounting for the vertex changes and edge changes simultaneously, is valid and powerful to capture the group difference of biological networks.

【 授权许可】

CC BY   
© Ji et al. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311092976282ZK.pdf 1286KB PDF download
12864_2017_3920_Article_IEq5.gif 1KB Image download
12864_2015_2129_Article_IEq30.gif 1KB Image download
12864_2017_3920_Article_IEq6.gif 1KB Image download
12864_2017_3920_Article_IEq7.gif 1KB Image download
12864_2016_3440_Article_IEq71.gif 1KB Image download
12870_2017_1068_Article_IEq24.gif 1KB Image download
12864_2015_2213_Article_IEq1.gif 1KB Image download
12864_2017_4346_Article_IEq1.gif 1KB Image download
12864_2017_4131_Article_IEq1.gif 1KB Image download
12864_2017_3487_Article_IEq54.gif 1KB Image download
12864_2017_3487_Article_IEq55.gif 1KB Image download
12864_2015_2198_Article_IEq11.gif 1KB Image download
12864_2017_3777_Article_IEq11.gif 1KB Image download
12864_2017_3487_Article_IEq58.gif 1KB Image download
【 图 表 】

12864_2017_3487_Article_IEq58.gif

12864_2017_3777_Article_IEq11.gif

12864_2015_2198_Article_IEq11.gif

12864_2017_3487_Article_IEq55.gif

12864_2017_3487_Article_IEq54.gif

12864_2017_4131_Article_IEq1.gif

12864_2017_4346_Article_IEq1.gif

12864_2015_2213_Article_IEq1.gif

12870_2017_1068_Article_IEq24.gif

12864_2016_3440_Article_IEq71.gif

12864_2017_3920_Article_IEq7.gif

12864_2017_3920_Article_IEq6.gif

12864_2015_2129_Article_IEq30.gif

12864_2017_3920_Article_IEq5.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  文献评价指标  
  下载次数:3次 浏览次数:0次