BMC Musculoskeletal Disorders | |
In vivo precision of three HR-pQCT-derived finite element models of the distal radius and tibia in postmenopausal women | |
Research Article | |
J. L. Lanovaz1  S. A. Kontulainen1  W. P. Olszynski2  J. D. Johnston3  M. A. Amini3  C. E. Kawalilak3  | |
[1] College of Kinesiology, University of Saskatchewan, Saskatoon, Canada;College of Medicine, University of Saskatchewan, Saskatoon, Canada;Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatoon, SK, Canada; | |
关键词: Distal radius; Distal tibia; Finite element modeling; HR-pQCT; Precision; | |
DOI : 10.1186/s12891-016-1238-x | |
received in 2015-12-22, accepted in 2016-08-31, 发布年份 2016 | |
来源: Springer | |
【 摘 要 】
BackgroundThe distal radius is the most common osteoporotic fracture site occurring in postmenopausal women. Finite element (FE) modeling is a non-invasive mathematical technique that can estimate bone strength using inputted geometry/micro-architecture and tissue material properties from computed tomographic images. Our first objective was to define and compare in vivo precision errors for three high-resolution peripheral quantitative computed tomography (HR-pQCT, XtremeCT; Scanco) based FE models of the distal radius and tibia in postmenopausal women. Our second objective was to assess the role of scan interval, scan quality, and common region on precision errors of outcomes for each FE model.MethodsModels included: single-tissue model (STM), cortical-trabecular dual-tissue model (DTM), and one scaled model using imaged bone mineral density (E-BMD). Using HR-pQCT, we scanned the distal radius and tibia of 34 postmenopausal women (74 ± 7 years), at two time points. Primary outcomes included: tissue stiffness, apparent modulus, average von Mises stress, and failure load. Precision errors (root-mean-squared coefficient of variation, CV%RMS) were calculated. Multivariate ANOVA was used to compare the mean of individual CV% among the 3 HR-pQCT-based FE models. Spearman correlations were used to characterize the associations between precision errors of all FE model outcomes and scan/time interval, scan quality, and common region. Significance was accepted at P < 0.05.ResultsAt the distal radius, CV%RMS precision errors were <9 % (Range STM: 2.8–5.3 %; DTM: 2.9–5.4 %; E-BMD: 4.4–8.7 %). At the distal tibia, CV%RMS precision errors were <6 % (Range STM: 2.7–4.8 %; DTM: 2.9–3.8 %; E-BMD: 1.8–2.5 %). At the radius, Spearman correlations indicated associations between the common region and associated precision errors of the E-BMD-derived apparent modulus (ρ = −0.392; P < 0.001) and von Mises stress (ρ = −0.297; P = 0.007).ConclusionResults suggest that the STM and DTM are more precise for modeling apparent modulus, average von Mises stress, and failure load at the distal radius. Precision errors were comparable for all three models at the distal tibia. Results indicate that the noted differences in precision error at the distal radius were associated with the common scan region, illustrating the importance of participant repositioning within the cast and reference line placement in the scout view during the scanning process.
【 授权许可】
CC BY
© The Author(s). 2016
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311092965339ZK.pdf | 583KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]