期刊论文详细信息
BMC Plant Biology
Identification and molecular characterization of tissue-preferred rice genes and their upstream regularly sequences on a genome-wide level
Research Article
Srinivasan Ramachandran1  Shu-Ye Jiang1  Jeevanandam Vanitha1  Yanan Bai1 
[1] Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore, Singapore;
关键词: Gene Ontology;    Transgenic Plant;    Vascular Bundle;    Rice Genome;    Transgenic Rice Plant;   
DOI  :  10.1186/s12870-014-0331-2
 received in 2014-05-29, accepted in 2014-11-11,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundGene upstream regularly sequences (URSs) can be used as one of the tools to annotate the biological functions of corresponding genes. In addition, tissue-preferred URSs are frequently used to drive the transgene expression exclusively in targeted tissues during plant transgenesis. Although many rice URSs have been molecularly characterized, it is still necessary and valuable to identify URSs that will benefit plant transformation and aid in analyzing gene function.ResultsIn this study, we identified and characterized root-, seed-, leaf-, and panicle-preferred genes on a genome-wide level in rice. Subsequently, their expression patterns were confirmed through quantitative real-time RT-PCR (qRT-PCR) by randomly selecting 9candidate tissue-preferred genes. In addition, 5 tissue-preferred URSs were characterized by investigating the URS::GUS transgenic plants. Of these URS::GUS analyses, the transgenic plants harboring LOC_Os03g11350 URS::GUS construct showed the GUS activity only in young pollen. In contrast, when LOC_Os10g22450 URS was used to drive the reporter GUS gene, the GUS activity was detected only in mature pollen. Interestingly, the LOC_Os10g34360 URS was found to be vascular bundle preferred and its activities were restricted only to vascular bundles of leaves, roots and florets. In addition, we have also identified two URSs from genes LOC_Os02G15090 and LOC_Os06g31070 expressed in a seed-preferred manner showing the highest expression levels of GUS activities in mature seeds.ConclusionBy genome-wide analysis, we have identified tissue-preferred URSs, five of which were further characterized using transgenic plants harboring URS::GUS constructs. These data might provide some evidence for possible functions of the genes and be a valuable resource for tissue-preferred candidate URSs for plant transgenesis.

【 授权许可】

Unknown   
© Jiang et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311092843845ZK.pdf 4986KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  文献评价指标  
  下载次数:5次 浏览次数:0次