期刊论文详细信息
BMC Genomics
Exploring the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme patients by a novel survival analysis model
Research
Zhenzhou Yang1  Nan Hu1  Xiaoyu He2  Yuan Xia3  Le Zhang4  Tingting Li5  Chuanwei Yang6 
[1] Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, 400042, Chongqing, People’s Republic of China;Chongqing Zhongdi Medical Information Technology Co., Ltd, 401320, Chongqing, People’s Republic of China;College of Computer and Information Science, Southwest University, 400715, Chongqing, People’s Republic of China;College of Computer and Information Science, Southwest University, 400715, Chongqing, People’s Republic of China;College of Mathematics and Statistics, Southwest University, 400715, Chongqing, People’s Republic of China;College of Mathematics and Statistics, Southwest University, 400715, Chongqing, People’s Republic of China;Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, USA;Breast Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, USA;
关键词: Least absolute shrinkage and selection operator (Lasso);    Sure independence screening (SIS);    Cox proportional hazards model (Cox);    Glioblastoma multiforme (GBM);    Signaling transduction pathway;   
DOI  :  10.1186/s12864-016-3256-3
来源: Springer
PDF
【 摘 要 】

BackgroundThis study is to explore the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme (GBM) patients.ResultsOur results not only showed that mutually explored GBM survival time related genes and signaling transduction pathways are closely related to the GBM, but also demonstrated that our innovated constrained optimization algorithm (CoxSisLasso strategy) are better than the classical methods (CoxLasso and CoxSis strategy).ConclusionWe analyzed why the CoxSisLasso strategy can outperform the existing classical methods and discuss how to extend this research in the distant future.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311092666494ZK.pdf 1452KB PDF download
12888_2016_877_Article_IEq24.gif 1KB Image download
12864_2017_4132_Article_IEq24.gif 1KB Image download
12864_2017_3610_Article_IEq3.gif 1KB Image download
12864_2017_3670_Article_IEq16.gif 1KB Image download
12864_2016_3256_Article_IEq5.gif 1KB Image download
【 图 表 】

12864_2016_3256_Article_IEq5.gif

12864_2017_3670_Article_IEq16.gif

12864_2017_3610_Article_IEq3.gif

12864_2017_4132_Article_IEq24.gif

12888_2016_877_Article_IEq24.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  文献评价指标  
  下载次数:31次 浏览次数:0次