期刊论文详细信息
BMC Genomics
Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in immunity in the large yellow croaker during Aeromonas hydrophila infection
Research Article
Yinnan Mu1  Jingqun Ao1  Xinhua Chen1  Feng Ding2  Peng Cui2  Songnian Hu2 
[1] Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005, Xiamen, China;The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100029, Beijing, China;
关键词: Gene Ontology;    Aeromonas Hydrophila;    Large Yellow Croaker;    Transcriptome Database;    Blue Catfish;   
DOI  :  10.1186/1471-2164-11-506
 received in 2010-05-13, accepted in 2010-09-22,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundThe large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China suffering from severe outbreaks of infectious disease caused by marine bacteria such as Aeromonas hydrophila (A. hydrophila), resulting in great economic losses. However, the mechanisms involved in the immune response of this fish to bacterial infection are not fully understood. To understand the molecular mechanisms underlying the immune response to such pathogenic bacteria, we used high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the large yellow croaker infected with A. hydrophila.ResultsA total of 13,611,340 reads were obtained and assembled into 26,313 scaffolds in transcriptional responses of the A. hydrophila-infected large yellow croaker. Via annotation to the NCBI database, we obtained 8216 identified unigenes. In total, 5590 (68%) unigenes were classified into Gene Ontology, and 3094 unigenes were found in 20 KEGG categories. These genes included representatives from almost all functional categories. By using Solexa/Illumina's DeepSAGE, 1996 differentially expressed genes (P value < 0.05) were detected in comparative analysis of the expression profiles between A. hydrophila-infected fish and control fish, including 727 remarkably upregulated genes and 489 remarkably downregulated genes. Dramatic differences were observed in genes involved in the inflammatory response. Bacterial infection affected the gene expression of many components of signaling cascades, including the Toll-like receptor, JAK-STAT, and MAPK pathways. Genes encoding factors involved in T cell receptor (TCR) signaling were also revealed to be regulated by infection in these fish.ConclusionBased on our results, we conclude that the inflammatory response may play an important role in the early stages of infection. The signaling cascades such as the Toll-like receptor, JAK-STAT, and MAPK pathways are regulated by A. hydrophila infection. Interestingly, genes encoding factors involved in TCR signaling were revealed to be downregulated by infection, indicating that TCR signaling was suppressed at this early period. These results revealed changes of multiple signaling pathways involved in immunity during A. hydrophila infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the large yellow croaker.

【 授权许可】

Unknown   
© Mu et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311091970427ZK.pdf 3079KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  文献评价指标  
  下载次数:1次 浏览次数:1次