期刊论文详细信息
BMC Genomics
Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins
Research Article
Timothy G Lilburn1  Jianying Gu2  Hong Cai3  Yufeng Wang4 
[1] Department of Bacteriology, ATCC, 20110, Manassas, VA, USA;Department of Biology, College of Staten Island, City University of New York, 10314, Staten Island, NY, USA;Department of Biology, University of Texas at San Antonio, 78249, San Antonio, TX, USA;Department of Biology, University of Texas at San Antonio, 78249, San Antonio, TX, USA;South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, 78249, San Antonio, TX, USA;
关键词: Orthologous Group;    Genomic Island;    Pandemic Strain;    Cholerae Strain;    Core Proteome;   
DOI  :  10.1186/1471-2164-11-369
 received in 2010-02-19, accepted in 2010-06-10,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundSpecies of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges.ResultsWe deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined.ConclusionsThe proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments.

【 授权许可】

CC BY   
© Lilburn et al; licensee BioMed Central Ltd. 2010

【 预 览 】
附件列表
Files Size Format View
RO202311091938470ZK.pdf 1653KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  文献评价指标  
  下载次数:3次 浏览次数:0次