期刊论文详细信息
BMC Bioinformatics
A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data
Methodology Article
Hongyu Miao1  Liang Wu1  Shupeng Gui2  Ji Liu3  Andrew P. Rice4  Rui Chen5 
[1] Department of Biostatistics, University of Texas Health Science Center, 77030, Houston, TX, USA;Department of Computer Science, University of Rochester, 14620, Rochester, NY, USA;Department of Computer Science, University of Rochester, 14620, Rochester, NY, USA;Goergen Institute for Data Science, University of Rochester, 14620, Rochester, NY, USA;Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA;Department of Molecular and Human Genetics, Baylor College of Medicine, 77030, Houston, TX, USA;
关键词: Gene regulatory network;    Hub gene structure;    Ultra-high dimensional problem;    Decomposable multi-structure identification;    Influenza infection;   
DOI  :  10.1186/s12859-017-1489-z
 received in 2016-10-22, accepted in 2017-01-20,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundGene regulatory interactions are of fundamental importance to various biological functions and processes. However, only a few previous computational studies have claimed success in revealing genome-wide regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover, recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100 or higher.ResultsHere we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN) structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even for a network size on the order of 104, and is thus readily applicable to large-scale complex networks. Such a breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e., sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate the application of our algorithm in practice using the time-course gene expression data from a study on human respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial cell infection by IAV.ConclusionsThe proposed algorithm is the first scalable method for large complex network structure identification. The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose which gene functions to investigate in a biological event. The algorithm described in this article is implemented in MATLAB Ⓡ, and the source code is freely available from https://github.com/Hongyu-Miao/DMI.git.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311091406634ZK.pdf 1453KB PDF download
12888_2016_877_Article_IEq2.gif 1KB Image download
12888_2016_877_Article_IEq3.gif 1KB Image download
12888_2016_877_Article_IEq4.gif 1KB Image download
12888_2016_877_Article_IEq5.gif 1KB Image download
12864_2017_4196_Article_IEq2.gif 1KB Image download
12864_2015_2192_Article_IEq11.gif 1KB Image download
12864_2017_3503_Article_IEq1.gif 1KB Image download
12864_2015_2192_Article_IEq13.gif 1KB Image download
12864_2015_2192_Article_IEq14.gif 1KB Image download
12888_2016_877_Article_IEq9.gif 1KB Image download
12864_2016_2871_Article_IEq10.gif 1KB Image download
12888_2016_877_Article_IEq10.gif 1KB Image download
12864_2017_3487_Article_IEq16.gif 1KB Image download
12864_2017_3733_Article_IEq19.gif 1KB Image download
12898_2017_155_Article_IEq33.gif 1KB Image download
12864_2017_4004_Article_IEq14.gif 1KB Image download
12864_2017_4004_Article_IEq15.gif 1KB Image download
12864_2016_2392_Article_IEq3.gif 1KB Image download
12864_2017_3487_Article_IEq19.gif 1KB Image download
【 图 表 】

12864_2017_3487_Article_IEq19.gif

12864_2016_2392_Article_IEq3.gif

12864_2017_4004_Article_IEq15.gif

12864_2017_4004_Article_IEq14.gif

12898_2017_155_Article_IEq33.gif

12864_2017_3733_Article_IEq19.gif

12864_2017_3487_Article_IEq16.gif

12888_2016_877_Article_IEq10.gif

12864_2016_2871_Article_IEq10.gif

12888_2016_877_Article_IEq9.gif

12864_2015_2192_Article_IEq14.gif

12864_2015_2192_Article_IEq13.gif

12864_2017_3503_Article_IEq1.gif

12864_2015_2192_Article_IEq11.gif

12864_2017_4196_Article_IEq2.gif

12888_2016_877_Article_IEq5.gif

12888_2016_877_Article_IEq4.gif

12888_2016_877_Article_IEq3.gif

12888_2016_877_Article_IEq2.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  文献评价指标  
  下载次数:6次 浏览次数:1次