期刊论文详细信息
BMC Genomics
Identification and analysis of in planta expressed genes of Magnaporthe oryzae
Research Article
Yong-Hwan Lee1  Jongsun Park1  Sook-Young Park1  Soonok Kim2  Thomas K Mitchell3 
[1] Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University, 151-921, Seoul, Korea;Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University, 151-921, Seoul, Korea;Department of Plant Pathology, The Ohio State University, 43210, Columbus, OH, USA;Department of Plant Pathology, The Ohio State University, 43210, Columbus, OH, USA;
关键词: Suppression Subtractive Hybridization;    Fungal Gene;    Codon Usage Pattern;    Subtraction Library;    Sclareol;   
DOI  :  10.1186/1471-2164-11-104
 received in 2009-09-04, accepted in 2010-02-10,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundInfection of plants by pathogens and the subsequent disease development involves substantial changes in the biochemistry and physiology of both partners. Analysis of genes that are expressed during these interactions represents a powerful strategy to obtain insights into the molecular events underlying these changes. We have employed expressed sequence tag (EST) analysis to identify rice genes involved in defense responses against infection by the blast fungus Magnaporthe oryzae and fungal genes involved in infectious growth within the host during a compatible interaction.ResultsA cDNA library was constructed with RNA from rice leaves (Oryza sativa cv. Hwacheong) infected with M. oryzae strain KJ201. To enrich for fungal genes, subtraction library using PCR-based suppression subtractive hybridization was constructed with RNA from infected rice leaves as a tester and that from uninfected rice leaves as the driver. A total of 4,148 clones from two libraries were sequenced to generate 2,302 non-redundant ESTs. Of these, 712 and 1,562 ESTs could be identified to encode fungal and rice genes, respectively. To predict gene function, Gene Ontology (GO) analysis was applied, with 31% and 32% of rice and fungal ESTs being assigned to GO terms, respectively. One hundred uniESTs were found to be specific to fungal infection EST. More than 80 full-length fungal cDNA sequences were used to validate ab initio annotated gene model of M. oryzae genome sequence.ConclusionThis study shows the power of ESTs to refine genome annotation and functional characterization. Results of this work have advanced our understanding of the molecular mechanisms underpinning fungal-plant interactions and formed the basis for new hypothesis.

【 授权许可】

Unknown   
© Kim et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311091352119ZK.pdf 1397KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  文献评价指标  
  下载次数:0次 浏览次数:0次