期刊论文详细信息
BMC Plant Biology
Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex
Research Article
Jian Ping Huang1  Meral Tunc-Ozdemir1  Alejandro C Colaneri1  Alan M Jones2 
[1] Department of Biology, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA;Department of Biology, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA;Department of Pharmacology, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA;
关键词: Salt Stress;    Salt Overly Sensitive;    Confer Salt Tolerance;    Protein Interactome;    Yeast Complementation Assay;   
DOI  :  10.1186/1471-2229-14-129
 received in 2014-01-21, accepted in 2014-04-30,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundPlant growth is plastic, able to rapidly adjust to fluctuation in environmental conditions such as drought and salinity. Due to long-term irrigation use in agricultural systems, soil salinity is increasing; consequently crop yield is adversely affected. It is known that salt tolerance is a quantitative trait supported by genes affecting ion homeostasis, ion transport, ion compartmentalization and ion selectivity. Less is known about pathways connecting NaCl and cell proliferation and cell death. Plant growth and cell proliferation is, in part, controlled by the concerted activity of the heterotrimeric G-protein complex with glucose. Prompted by the abundance of stress-related, functional annotations of genes encoding proteins that interact with core components of the Arabidopsis heterotrimeric G protein complex (AtRGS1, AtGPA1, AGB1, and AGG), we tested the hypothesis that G proteins modulate plant growth under salt stress.ResultsNa+ activates G signaling as quantitated by internalization of Arabidopsis Regulator of G Signaling protein 1 (AtRGS1). Despite being components of a singular signaling complex loss of the Gβ subunit (agb1-2 mutant) conferred accelerated senescence and aborted development in the presence of Na+, whereas loss of AtRGS1 (rgs1-2 mutant) conferred Na+ tolerance evident as less attenuated shoot growth and senescence. Site-directed changes in the Gα and Gβγ protein-protein interface were made to disrupt the interaction between the Gα and Gβγ subunits in order to elevate free activated Gα subunit and free Gβγ dimer at the plasma membrane. These mutations conferred sodium tolerance. Glucose in the growth media improved the survival under salt stress in Col but not in agb1-2 or rgs1-2 mutants.ConclusionsThese results demonstrate a direct role for G-protein signaling in the plant growth response to salt stress. The contrasting phenotypes of agb1-2 and rgs1-2 mutants suggest that G-proteins balance growth and death under salt stress. The phenotypes of the loss-of-function mutations prompted the model that during salt stress, G activation promotes growth and attenuates senescence probably by releasing ER stress.

【 授权许可】

Unknown   
© Colaneri et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311091285787ZK.pdf 3551KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  文献评价指标  
  下载次数:14次 浏览次数:1次