期刊论文详细信息
BMC Evolutionary Biology
The path to re-evolve cooperation is constrained in Pseudomonas aeruginosa
Research Article
Elisa T. Granato1  Rolf Kümmerli1 
[1] Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland;
关键词: Cooperation;    Siderophores;    Cheating;    Iron;    Pseudomonas;    pvdS;    Sigma factor;   
DOI  :  10.1186/s12862-017-1060-6
 received in 2017-07-12, accepted in 2017-09-01,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundA common form of cooperation in bacteria is based on the secretion of beneficial metabolites, shareable as public good among cells within a group. Because cooperation can be exploited by “cheating” mutants, which contribute less or nothing to the public good, there has been great interest in understanding the conditions required for cooperation to remain evolutionarily stable. In contrast, much less is known about whether cheats, once fixed in the population, are able to revert back to cooperation when conditions change. Here, we tackle this question by subjecting experimentally evolved cheats of Pseudomonas aeruginosa, partly deficient for the production of the iron-scavenging public good pyoverdine, to conditions previously shown to favor cooperation.ResultsFollowing approximately 200 generations of experimental evolution, we screened 720 evolved clones for changes in their pyoverdine production levels. We found no evidence for the re-evolution of full cooperation, even in environments with increased spatial structure, and reduced costs of public good production – two conditions that have previously been shown to maintain cooperation. In contrast, we observed selection for complete abolishment of pyoverdine production. The patterns of complete trait degradation were likely driven by “cheating on cheats” in unstructured, iron-limited environments where pyoverdine is important for growth, and selection against a maladaptive trait in iron-rich environments where pyoverdine is superfluous.ConclusionsOur study shows that the path to re-evolve public-goods cooperation can be constrained. While a limitation of the number of mutational targets potentially leading to reversion might be one reason for the observed pattern, an alternative explanation is that the selective conditions required for revertants to spread from rarity are much more stringent than those needed to maintain cooperation.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311091218785ZK.pdf 1607KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  文献评价指标  
  下载次数:12次 浏览次数:2次