期刊论文详细信息
BMC Medical Imaging
Automatic detection of abnormalities in mammograms
Technical Advance
Mansoor Sarwar1  Kashif Murtaza1  Zobia Suhail1 
[1] Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore, Pakistan;
关键词: Ratio Energy;    Normal Image;    Morphological Operation;    Foreground Pixel;    Frequency Subbands;   
DOI  :  10.1186/s12880-015-0094-8
 received in 2014-12-29, accepted in 2015-10-20,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundIn recent years, an increased interest has been seen in the area of medical image processing and, as a consequence, Computer Aided Diagnostic (CAD) systems. The basic purpose of CAD systems is to assist doctors in the process of diagnosis. CAD systems, however, are quite expensive, especially, in most of the developing countries. Our focus is on developing a low-cost CAD system. Today, most of the CAD systems regarding mammogram classification target automatic detection of calcification and abnormal mass. Calcification normally indicates an early symptom of breast cancer if it appears as a small size bright spot in a mammogram image.MethodsBased on the observation that calcification appears as small bright spots on a mammogram image, we propose a new scale-specific blob detection technique in which the scale is selected through supervised learning. By computing energy for each pixel at two different scales, a new feature “Ratio Energy” is introduced for efficient blob detection. Due to the imposed simplicity of the feature and post processing, the running time of our algorithm is linear with respect to image size.ResultsTwo major types of calcification, microcalcification and macrocalcification have been identified and highlighted by drawing a circular boundary outside the area that contains calcification. Results are quite visible and satisfactory, and the radiologists can easily view results through the final detected boundary.ConclusionsCAD systems are designed to help radiologists in verifying their diagnostics. A new way of identifying calcification is proposed based on the property that microcalcification is small in size and appears in clusters. Results are quite visible and encouraging, and can assist radiologists in early detection of breast cancer.

【 授权许可】

CC BY   
© Suhail et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311091132471ZK.pdf 1121KB PDF download
12864_2017_4071_Article_IEq5.gif 1KB Image download
【 图 表 】

12864_2017_4071_Article_IEq5.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  文献评价指标  
  下载次数:4次 浏览次数:0次