期刊论文详细信息
BMC Genomics
De novo assembly and analysis of changes in the protein-coding transcriptome of the freshwater shrimp Paratya australiensis (Decapoda: Atyidae) in response to acid sulfate drainage water
Research Article
Anupama Kumar1  Adrienne L. Gregg1  Peter A. Bain2 
[1] Commonwealth Scientific and Industrial Research Organisation, Waite Road, 5064, Urrbrae, Australia;Commonwealth Scientific and Industrial Research Organisation, Waite Road, 5064, Urrbrae, Australia;Commonwealth Scientific and Industrial Research Organisation, Private Mail Bag 2, 5064, Glen Osmond, Australia;
关键词: Decapod crustaceans;    Aquatic toxicology;    Transcriptomics;    Acid sulfate soils;    Toxicogenomics;   
DOI  :  10.1186/s12864-016-3208-y
 received in 2016-06-30, accepted in 2016-10-25,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundThe atyid shrimp Paratya australiensis occurs in surface freshwater habitats throughout eastern Australia and has been used to study the ecotoxicology of contaminants such as pesticides and metals. The acidification of surface water that can occur after acid sulfate material in soils and sediments is oxidised and subsequently re-wetted is a serious environmental issue in coastal regions and inland riverine floodplains worldwide. Solubilisation of soil-associated minerals can result in high waterborne concentrations of mineral salts and dissolved metals, which together with low pH represent a potential threat to aquatic ecosystems in affected regions. The aims of the present study were to gain insight into stress responses induced by exposure to acid drainage water (ADW) in P. australiensis by determining changes in the abundance of protein-coding transcripts and to generate a comprehensive transcriptomic resource to facilitate further research into gene regulation or protein structure and function in this species. Adult P. australiensis were exposed for 24 h to undiluted ADW, 50 % ADW diluted in river water, or to river water as control, and high-throughput mRNA sequencing (RNA-Seq) conducted on whole-body tissues. A reference transcriptome was generated using de novo assembly and putative protein-coding regions were identified and annotated. Changes in transcript abundance in response to ADW exposure were determined by aligning reads to the reference transcriptome and quantifying coverage.ResultsA high proportion of arthropod benchmarking universal single-copy orthologues were present in the reference transcriptome. Functions associated with cuticle biosynthesis and oxidative stress were significantly enriched in the lists of transcripts exhibiting differential abundance in either direction after exposure to 50 % or 100 % ADW. Transcripts involved in osmoregulation exhibited decreased abundance following exposure to ADW. The transcriptome contained full-length coding sequences for numerous proteins known to be involved in environmental response pathways, including two putative metallothioneins, four glutathione peroxidases and 19 nuclear receptors.ConclusionsThe results of the present study provide insight into stress response pathways induced in crustaceans by short-term exposure to multiple stressors present in ADW such as low pH, high salinity and dissolved metals, and represent a resource for future toxicogenomics and protein functional studies in P. australiensis.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311090972302ZK.pdf 2727KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  文献评价指标  
  下载次数:1次 浏览次数:0次