期刊论文详细信息
BMC Bioinformatics
BayesFlow: latent modeling of flow cytometry cell populations
Research Article
Kerstin Johnsson1  Magnus Fontes2  Jonas Wallin3 
[1] Centre for Mathematical Sciences, Lund University, Box 118, S-221 00, Lund, Sweden;Centre for Mathematical Sciences, Lund University, Box 118, S-221 00, Lund, Sweden;International Group for Data Analysis, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France;Mathematical Sciences, Chalmers and University of Gothenburg, S-412 58, Gothenburg, Sweden;
关键词: Bayesian hierarchical models;    Flow cytometry;    Model-based clustering;    Primary 62P10;    Secondary 62F15;    68U99;   
DOI  :  10.1186/s12859-015-0862-z
 received in 2015-05-20, accepted in 2015-12-17,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundFlow cytometry is a widespread single-cell measurement technology with a multitude of clinical and research applications. Interpretation of flow cytometry data is hard; the instrumentation is delicate and can not render absolute measurements, hence samples can only be interpreted in relation to each other while at the same time comparisons are confounded by inter-sample variation. Despite this, most automated flow cytometry data analysis methods either treat samples individually or ignore the variation by for example pooling the data. A key requirement for models that include multiple samples is the ability to visualize and assess inferred variation, since what could be technical variation in one setting would be different phenotypes in another.ResultsWe introduce BayesFlow, a pipeline for latent modeling of flow cytometry cell populations built upon a Bayesian hierarchical model. The model systematizes variation in location as well as shape. Expert knowledge can be incorporated through informative priors and the results can be supervised through compact and comprehensive visualizations.BayesFlow is applied to two synthetic and two real flow cytometry data sets. For the first real data set, taken from the FlowCAP I challenge, BayesFlow does not only give a gating which would place it among the top performers in FlowCAP I for this dataset, it also gives a more consistent treatment of different samples than either manual gating or other automated gating methods. The second real data set contains replicated flow cytometry measurements of samples from healthy individuals. BayesFlow gives here cell populations with clear expression patterns and small technical intra-donor variation as compared to biological inter-donor variation.ConclusionsModeling latent relations between samples through BayesFlow enables a systematic analysis of inter-sample variation. As opposed to other joint gating methods, effort is put at ensuring that the obtained partition of the data corresponds to actual cell populations, and the result is therefore directly biologically interpretable. BayesFlow is freely available at GitHub.

【 授权许可】

CC BY   
© Johnsson et al. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311090971457ZK.pdf 3316KB PDF download
12864_2016_2682_Article_IEq39.gif 1KB Image download
12864_2017_4030_Article_IEq1.gif 1KB Image download
12864_2016_2871_Article_IEq4.gif 1KB Image download
12864_2016_2821_Article_IEq7.gif 1KB Image download
12864_2017_4025_Article_IEq5.gif 1KB Image download
12864_2016_2848_Article_IEq16.gif 1KB Image download
12864_2017_3655_Article_IEq26.gif 1KB Image download
12864_2016_3440_Article_IEq30.gif 1KB Image download
12864_2015_2198_Article_IEq48.gif 1KB Image download
12864_2017_4020_Article_IEq38.gif 1KB Image download
12864_2016_2463_Article_IEq4.gif 1KB Image download
12864_2015_2296_Article_IEq158.gif 1KB Image download
12864_2016_2463_Article_IEq5.gif 1KB Image download
【 图 表 】

12864_2016_2463_Article_IEq5.gif

12864_2015_2296_Article_IEq158.gif

12864_2016_2463_Article_IEq4.gif

12864_2017_4020_Article_IEq38.gif

12864_2015_2198_Article_IEq48.gif

12864_2016_3440_Article_IEq30.gif

12864_2017_3655_Article_IEq26.gif

12864_2016_2848_Article_IEq16.gif

12864_2017_4025_Article_IEq5.gif

12864_2016_2821_Article_IEq7.gif

12864_2016_2871_Article_IEq4.gif

12864_2017_4030_Article_IEq1.gif

12864_2016_2682_Article_IEq39.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  文献评价指标  
  下载次数:6次 浏览次数:0次