期刊论文详细信息
BMC Bioinformatics
An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
Methodology Article
Samuel A. Shelburne1  Jessica Galloway-Pena2  W. Duncan Wadsworth3  Marina Vannucci3  Michele Guindani4  Raffaele Argiento5 
[1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA;Department of Infectious Disease, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA;Department of Statistics, Rice University, Houston, TX, USA;Department of Statistics, University of California, Irvine, CA, USA;ESOMAS Department, University of Torino and Collegio Carlo Alberto, Torino, Italy;
关键词: Bayesian hierarchical model;    Data integration;    Dirichlet-multinomial;    Microbiome data;    Variable selection;   
DOI  :  10.1186/s12859-017-1516-0
 received in 2016-06-11, accepted in 2017-01-31,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundThe Human Microbiome has been variously associated with the immune-regulatory mechanisms involved in the prevention or development of many non-infectious human diseases such as autoimmunity, allergy and cancer. Integrative approaches which aim at associating the composition of the human microbiome with other available information, such as clinical covariates and environmental predictors, are paramount to develop a more complete understanding of the role of microbiome in disease development.ResultsIn this manuscript, we propose a Bayesian Dirichlet-Multinomial regression model which uses spike-and-slab priors for the selection of significant associations between a set of available covariates and taxa from a microbiome abundance table. The approach allows straightforward incorporation of the covariates through a log-linear regression parametrization of the parameters of the Dirichlet-Multinomial likelihood. Inference is conducted through a Markov Chain Monte Carlo algorithm, and selection of the significant covariates is based upon the assessment of posterior probabilities of inclusions and the thresholding of the Bayesian false discovery rate. We design a simulation study to evaluate the performance of the proposed method, and then apply our model on a publicly available dataset obtained from the Human Microbiome Project which associates taxa abundances with KEGG orthology pathways. The method is implemented in specifically developed R code, which has been made publicly available.ConclusionsOur method compares favorably in simulations to several recently proposed approaches for similarly structured data, in terms of increased accuracy and reduced false positive as well as false negative rates. In the application to the data from the Human Microbiome Project, a close evaluation of the biological significance of our findings confirms existing associations in the literature.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311090855520ZK.pdf 909KB PDF download
12864_2017_3781_Article_IEq6.gif 1KB Image download
12864_2017_4020_Article_IEq15.gif 1KB Image download
12864_2017_3733_Article_IEq52.gif 1KB Image download
12864_2017_4275_Article_IEq3.gif 1KB Image download
12864_2017_4190_Article_IEq5.gif 1KB Image download
12864_2017_3733_Article_IEq56.gif 1KB Image download
12864_2017_3655_Article_IEq3.gif 1KB Image download
12864_2016_2695_Article_IEq3.gif 1KB Image download
12864_2017_3487_Article_IEq2.gif 1KB Image download
12864_2016_3098_Article_IEq29.gif 1KB Image download
12888_2017_1557_Article_IEq1.gif 1KB Image download
12888_2017_1557_Article_IEq2.gif 1KB Image download
12864_2017_3777_Article_IEq24.gif 1KB Image download
12888_2017_1557_Article_IEq3.gif 1KB Image download
12864_2016_2696_Article_IEq4.gif 1KB Image download
12864_2017_3655_Article_IEq8.gif 1KB Image download
12902_2017_161_Article_IEq1.gif 1KB Image download
12864_2017_3733_Article_IEq69.gif 1KB Image download
12864_2017_4269_Article_IEq6.gif 1KB Image download
12864_2017_4269_Article_IEq7.gif 1KB Image download
12864_2017_4269_Article_IEq8.gif 1KB Image download
12864_2017_3655_Article_IEq12.gif 1KB Image download
12864_2017_3655_Article_IEq13.gif 1KB Image download
12864_2017_3655_Article_IEq15.gif 1KB Image download
12864_2017_3821_Article_IEq2.gif 1KB Image download
12864_2015_1994_Article_IEq8.gif 1KB Image download
12864_2017_4225_Article_IEq1.gif 1KB Image download
12864_2017_3821_Article_IEq4.gif 1KB Image download
12864_2017_3821_Article_IEq5.gif 1KB Image download
12864_2016_2821_Article_IEq6.gif 1KB Image download
12864_2017_4020_Article_IEq31.gif 1KB Image download
12864_2017_3655_Article_IEq23.gif 1KB Image download
12864_2015_2163_Article_IEq3.gif 1KB Image download
12864_2017_3655_Article_IEq25.gif 1KB Image download
12864_2015_2198_Article_IEq33.gif 1KB Image download
12864_2017_3655_Article_IEq27.gif 1KB Image download
12864_2017_4020_Article_IEq36.gif 1KB Image download
12864_2017_4020_Article_IEq38.gif 1KB Image download
12864_2017_4020_Article_IEq39.gif 1KB Image download
12864_2015_2296_Article_IEq158.gif 1KB Image download
12888_2016_848_Article_IEq1.gif 1KB Image download
12888_2016_848_Article_IEq2.gif 1KB Image download
12864_2017_4020_Article_IEq42.gif 1KB Image download
【 图 表 】

12864_2017_4020_Article_IEq42.gif

12888_2016_848_Article_IEq2.gif

12888_2016_848_Article_IEq1.gif

12864_2015_2296_Article_IEq158.gif

12864_2017_4020_Article_IEq39.gif

12864_2017_4020_Article_IEq38.gif

12864_2017_4020_Article_IEq36.gif

12864_2017_3655_Article_IEq27.gif

12864_2015_2198_Article_IEq33.gif

12864_2017_3655_Article_IEq25.gif

12864_2015_2163_Article_IEq3.gif

12864_2017_3655_Article_IEq23.gif

12864_2017_4020_Article_IEq31.gif

12864_2016_2821_Article_IEq6.gif

12864_2017_3821_Article_IEq5.gif

12864_2017_3821_Article_IEq4.gif

12864_2017_4225_Article_IEq1.gif

12864_2015_1994_Article_IEq8.gif

12864_2017_3821_Article_IEq2.gif

12864_2017_3655_Article_IEq15.gif

12864_2017_3655_Article_IEq13.gif

12864_2017_3655_Article_IEq12.gif

12864_2017_4269_Article_IEq8.gif

12864_2017_4269_Article_IEq7.gif

12864_2017_4269_Article_IEq6.gif

12864_2017_3733_Article_IEq69.gif

12902_2017_161_Article_IEq1.gif

12864_2017_3655_Article_IEq8.gif

12864_2016_2696_Article_IEq4.gif

12888_2017_1557_Article_IEq3.gif

12864_2017_3777_Article_IEq24.gif

12888_2017_1557_Article_IEq2.gif

12888_2017_1557_Article_IEq1.gif

12864_2016_3098_Article_IEq29.gif

12864_2017_3487_Article_IEq2.gif

12864_2016_2695_Article_IEq3.gif

12864_2017_3655_Article_IEq3.gif

12864_2017_3733_Article_IEq56.gif

12864_2017_4190_Article_IEq5.gif

12864_2017_4275_Article_IEq3.gif

12864_2017_3733_Article_IEq52.gif

12864_2017_4020_Article_IEq15.gif

12864_2017_3781_Article_IEq6.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  文献评价指标  
  下载次数:13次 浏览次数:3次